Multi-scale iterative refinement network for RGB-D salient object detection

Abstract The extensive research leveraging RGB-D information has been exploited in salient object detection. However, salient visual cues appear in various scales and resolutions of RGB images due to semantic gaps at different feature levels. Meanwhile, similar salient patterns are available in cross-modal depth images as well as multi-scale versions. Cross-modal fusion and multi-scale refinement are still an open problem in RGB-D salient object detection task. In this paper, we begin by introducing top-down and bottom-up iterative refinement architecture to leverage multi-scale features, and then devise attention based fusion module (ABF) to address on cross-modal correlation. We conduct extensive experiments on seven public datasets. The experimental results show the effectiveness of our devised method.

[1]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Zhi Liu,et al.  Salient region detection for stereoscopic images , 2014, 2014 19th International Conference on Digital Signal Processing.

[3]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Chao Gao,et al.  BASNet: Boundary-Aware Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Zhou Huang,et al.  Multi-level Cross-modal Interaction Network for RGB-D Salient Object Detection , 2020, Neurocomputing.

[6]  Huan Du,et al.  Depth-Aware Salient Object Detection and Segmentation via Multiscale Discriminative Saliency Fusion and Bootstrap Learning , 2017, IEEE Transactions on Image Processing.

[7]  Yizhou Yu,et al.  Deep Contrast Learning for Salient Object Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Wei Liu,et al.  ParseNet: Looking Wider to See Better , 2015, ArXiv.

[9]  Youfu Li,et al.  Three-Stream Attention-Aware Network for RGB-D Salient Object Detection , 2019, IEEE Transactions on Image Processing.

[10]  Tao Li,et al.  Structure-Measure: A New Way to Evaluate Foreground Maps , 2017, International Journal of Computer Vision.

[11]  Junwei Han,et al.  CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion. , 2018, IEEE transactions on cybernetics.

[12]  Qingming Huang,et al.  Saliency Detection for Stereoscopic Images Based on Depth Confidence Analysis and Multiple Cues Fusion , 2016, IEEE Signal Processing Letters.

[13]  Jiawei Wang,et al.  The Retrieval of the Beautiful: Self-Supervised Salient Object Detection for Beauty Product Retrieval , 2019, ACM Multimedia.

[14]  Dan Su,et al.  Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection , 2019, Pattern Recognit..

[15]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Xiaojin Gong,et al.  Adaptive Fusion for RGB-D Salient Object Detection , 2019, IEEE Access.

[17]  K. Madhava Krishna,et al.  Depth really Matters: Improving Visual Salient Region Detection with Depth , 2013, BMVC.

[18]  Bo Ren,et al.  Enhanced-alignment Measure for Binary Foreground Map Evaluation , 2018, IJCAI.

[19]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[20]  Haibin Ling,et al.  Saliency Detection on Light Field , 2014, CVPR.

[21]  Rongrong Ji,et al.  RGBD Salient Object Detection: A Benchmark and Algorithms , 2014, ECCV.

[22]  Yingfeng Cai,et al.  Salient object detection based on multi-scale contrast , 2018, Neural Networks.

[23]  Songyuan Li,et al.  Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Gang Wang,et al.  A Bi-Directional Message Passing Model for Salient Object Detection , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[25]  Guanbin Li,et al.  Visual Saliency Detection Based on Multiscale Deep CNN Features. , 2016, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[26]  David M. W. Powers,et al.  Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation , 2011, ArXiv.

[27]  Wei Zhang,et al.  Salient object detection for RGB-D image by single stream recurrent convolution neural network , 2019, Neurocomputing.

[28]  Yuan Xie,et al.  Instance-Level Salient Object Segmentation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Xiaochun Cao,et al.  Depth Enhanced Saliency Detection Method , 2014, ICIMCS '14.

[30]  Zhiming Luo,et al.  Non-local Deep Features for Salient Object Detection , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Zhuowen Tu,et al.  Deeply Supervised Salient Object Detection with Short Connections , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Yang Cao,et al.  Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Shi-Min Hu,et al.  Global Contrast Based Salient Region Detection , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Huchuan Lu,et al.  Multi-Scale Interactive Network for Salient Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Abhinav Gupta,et al.  Non-local Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[36]  Ran Ju,et al.  Depth saliency based on anisotropic center-surround difference , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[37]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[38]  Daniel Cremers,et al.  An algorithm for minimizing the Mumford-Shah functional , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[39]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[40]  Qijun Zhao,et al.  RGB-D Salient Object Detection via 3D Convolutional Neural Networks , 2021, AAAI.

[41]  Huchuan Lu,et al.  Learning Uncertain Convolutional Features for Accurate Saliency Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[42]  Ali Borji,et al.  Three Birds One Stone: A General Architecture for Salient Object Segmentation, Edge Detection and Skeleton Extraction , 2018 .

[43]  Gang Wang,et al.  Progressive Attention Guided Recurrent Network for Salient Object Detection , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44]  Ronggang Wang,et al.  An Innovative Salient Object Detection Using Center-Dark Channel Prior , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[45]  Wei Ji,et al.  Depth-Induced Multi-Scale Recurrent Attention Network for Saliency Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[46]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Zheng Lin,et al.  Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[48]  Ge Li,et al.  A Three-Pathway Psychobiological Framework of Salient Object Detection Using Stereoscopic Technology , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[49]  Simone Frintrop,et al.  Center-surround divergence of feature statistics for salient object detection , 2011, 2011 International Conference on Computer Vision.

[50]  Huchuan Lu,et al.  Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[51]  Ling Shao,et al.  Bifurcated Backbone Strategy for RGB-D Salient Object Detection , 2020, IEEE Transactions on Image Processing.

[52]  Xiaojun Chang,et al.  Reinforcement Cutting-Agent Learning for Video Object Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[53]  Xing Cai,et al.  PDNet: Prior-Model Guided Depth-Enhanced Network for Salient Object Detection , 2018, 2019 IEEE International Conference on Multimedia and Expo (ICME).

[54]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Linwei Ye,et al.  Cross-Modal Weighting Network for RGB-D Salient Object Detection , 2020, ECCV.

[56]  Gang Hua,et al.  Automatic salient object extraction with contextual cue and its applications to recognition and alpha matting , 2013, Pattern Recognit..

[57]  Xueqing Li,et al.  Leveraging stereopsis for saliency analysis , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Srinivas S. Kruthiventi,et al.  Saliency Unified: A Deep Architecture for simultaneous Eye Fixation Prediction and Salient Object Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[61]  Tongwei Ren,et al.  Salient object detection for RGB-D image via saliency evolution , 2016, 2016 IEEE International Conference on Multimedia and Expo (ICME).

[62]  Jiandong Tian,et al.  RGBD Salient Object Detection via Deep Fusion , 2016, IEEE Transactions on Image Processing.

[63]  Nick Barnes,et al.  Local Background Enclosure for RGB-D Salient Object Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[65]  Youfu Li,et al.  Progressively Complementarity-Aware Fusion Network for RGB-D Salient Object Detection , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[66]  D. Powers Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation , 2008 .