Structure–activity relationships in supported Au catalysts

Au-based catalysts have great potential because of their unique activity and selectivity for a variety of important reactions. The special catalytic properties of supported Au nano-particles depend critically upon the particle morphology, i.e. size, shape and thickness, as well as support effects. This paper reviews the current understanding of CO oxidation on supported Au catalysts. The electronic structure of Au particles at various nucleation sites and on different supports is summarized, and the effect these changes have on catalytic performance is discussed. Recent results from our laboratories have demonstrated the synthesis of well-ordered Au mono- and bi-layer films on a titanium oxide support and show that the active Au structure for CO oxidation is an electron-rich, Au bi-layer. In contrast, the monolayer structure, which may involve the TiOx support, is significantly less active (by less than an order of magnitude) than the Au bi-layer. The oxidation state of the Au and how this relates to the catalytic activity are also discussed. # 2005 Elsevier B.V. All rights reserved.

[1]  R. Mitrić,et al.  Reactivity of atomic gold anions toward oxygen and the oxidation of CO: experiment and theory. , 2004, Journal of the American Chemical Society.

[2]  T. Madey,et al.  GROWTH, MORPHOLOGY, INTERFACIAL EFFECTS AND CATALYTIC PROPERTIES OF Au ON TiO2 , 2001 .

[3]  S. C. Parker,et al.  Model oxide-supported metal catalysts: energetics, particle thicknesses, chemisorption and catalytic properties , 2000 .

[4]  M. Haruta When Gold Is Not Noble: Catalysis by Nanoparticles , 2003 .

[5]  L. Guczi,et al.  Gold nanoparticles deposited on SiO2/Si100: correlation between size, electron structure, and activity in CO oxidation. , 2003, Journal of the American Chemical Society.

[6]  J. Grunwaldt,et al.  Supported gold catalysts for CO oxidation: Effect of calcination on structure, adsorption and catalytic behaviour , 2001 .

[7]  Atsushi Ueda,et al.  Nitric Oxide Reduction with Hydrogen, Carbon Monoxide, and Hydrocarbons over Gold Catalysts , 1999 .

[8]  Yoshihito Maeda,et al.  Local barrier height of Au nanoparticles on a TiO2(1 1 0)-(1×2) surface , 2004 .

[9]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[10]  U. Landman,et al.  Interaction of O2 with Gold Clusters: Molecular and Dissociative Adsorption , 2003 .

[11]  A. Maiti,et al.  Activation of gold on titania: adsorption and reaction of SO(2) on Au/TiO(2)(110). , 2002, Journal of the American Chemical Society.

[12]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[13]  S. Galvagno,et al.  FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature , 1997 .

[14]  Z. Pászti,et al.  Modeling Gold Nanoparticles: Morphology, Electron Structure, and Catalytic Activity in CO Oxidation† , 2000 .

[15]  V. Idakiev,et al.  Low-temperature water-gas shift reaction on Auα-Fe2O3 catalyst , 1996 .

[16]  Harold H. Kung,et al.  Supported Au catalysts for low temperature CO oxidation , 2003 .

[17]  E. McFarland,et al.  Gas-Phase Catalysis by Micelle Derived Au Nanoparticles on Oxide Supports , 2004 .

[18]  S. C. Parker,et al.  The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering , 2002, Science.

[19]  J. Spivey,et al.  CO oxidation over supported Au catalysts , 2004 .

[20]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[21]  D. W. Goodman,et al.  “Catalytically active Au on Titania:” yet another example of a strong metal support interaction (SMSI)? , 2005 .

[22]  Toshio Hayashi,et al.  Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen , 1998 .

[23]  T. Madey,et al.  Effect of substrate temperature on the epitaxial growth of Au on TiO2(110) , 2001 .

[24]  D. Goodman,et al.  Modeling heterogeneous catalysts: metal clusters on planar oxide supports , 2000 .

[25]  J. Nørskov,et al.  Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). , 2003, Physical review letters.

[26]  B. Hammer,et al.  Active role of oxide support during CO oxidation at Au/MgO. , 2003, Physical review letters.

[27]  M. Haruta,et al.  The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation , 1997 .

[28]  R. P. Andres,et al.  Characterization of Gold–Titania Catalysts via Oxidation of Propylene to Propylene Oxide , 2000 .

[29]  William T. Wallace,et al.  Carbon Monoxide Adsorption on Selected Gold Clusters: Highly Size-Dependent Activity and Saturation Compositions , 2000 .

[30]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[31]  S. Pennycook,et al.  Oxygen chemisorption on Au nanoparticles , 2003 .

[32]  Charles T. Campbell,et al.  The Active Site in Nanoparticle Gold Catalysis , 2004, Science.

[33]  S. C. Parker,et al.  Island growth kinetics during the vapor deposition of gold onto TiO2(110) , 1999 .

[34]  J. Dumesic,et al.  Gold-nanotube membranes for the oxidation of CO at gas-water interfaces. , 2004, Angewandte Chemie.

[35]  S. Overbury,et al.  XAS Study of Au Supported on TiO2: Influence of Oxidation State and Particle Size on Catalytic Activity , 2004 .

[36]  D. Goodman,et al.  Scanning tunneling microscopy studies of the TiO 2 ( 110 ) surface: Structure and the nucleation growth of Pd , 1997 .

[37]  Qiang Sun,et al.  Interactions of Au cluster anions with oxygen. , 2004, The Journal of chemical physics.

[38]  C. Henry Catalytic activity of supported nanometer-sized metal clusters , 2000 .

[39]  B. Hammer,et al.  Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). , 2004, The Journal of chemical physics.

[40]  S. C. Parker,et al.  The kinetics of CO oxidation by adsorbed oxygen on well‐defined gold particles on TiO2(110) , 1999 .

[41]  B. Gates,et al.  Catalysis by supported gold: correlation between catalytic activity for CO oxidation and oxidation states of gold. , 2004, Journal of the American Chemical Society.

[42]  K. Domen,et al.  Selective Hydrogenation of Acetylene over Au/Al2O3 Catalyst , 2000 .

[43]  R. Stroud,et al.  Using Three Dimensions in Catalytic Mesoporous Nanoarchitectures , 2002 .

[44]  Masatake Haruta,et al.  When gold is not noble: catalysis by nanoparticles. , 2003, Chemical record.

[45]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[46]  B. Koel,et al.  Chemisorption of high coverages of atomic oxygen on the Pt(111), Pd(111), and Au(111) surfaces , 1990 .

[47]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[48]  M. Witcomb,et al.  Effect of Pretreatment Variables on the Reaction of Nitric Oxide (NO) with Au−TiO2: DRIFTS Studies , 2004 .

[49]  J. Dumesic,et al.  Powering Fuel Cells with CO via Aqueous Polyoxometalates and Gold Catalysts , 2004, Science.

[50]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[51]  D. Meier,et al.  CO Adsorption on Au(110)−(1 × 2): An IRAS Investigation , 2003 .

[52]  M. Haruta,et al.  A Kinetic and Adsorption Study of CO Oxidation over Unsupported Fine Gold Powder and over Gold Supported on Titanium Dioxide , 1999 .

[53]  Masatake Haruta,et al.  Advances in the catalysis of Au nanoparticles , 2001 .

[54]  R. Madix,et al.  The oxidation of carbon monoxide on the Au(110) surface , 1987 .

[55]  A. Datye,et al.  CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex , 2002 .

[56]  Andrew G. Glen,et al.  APPL , 2001 .

[57]  Masatake Haruta,et al.  Gold Catalysts Prepared by Coprecipitation for Low‐Temperature Oxidation of Hydrogen and of Carbon Monoxide. , 1989 .

[58]  Xue-qing Gong,et al.  Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au. , 2003, Physical review letters.

[59]  T. S. P. S.,et al.  GROWTH , 1924, Nature.

[60]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[61]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[62]  J. Nørskov,et al.  The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst , 2004 .

[63]  J. Nørskov,et al.  CO oxidation on rutile-supported au nanoparticles. , 2005, Angewandte Chemie.

[64]  D. Goodman,et al.  Titanium oxide films grown on Mo(110) , 1999 .

[65]  J. Nørskov,et al.  Making gold less noble , 2000 .

[66]  D. Astruc,et al.  Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum‐Size‐Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology. , 2004 .

[67]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.

[68]  B. Gates,et al.  Simultaneous Presence of Cationic and Reduced Gold in Functioning MgO-Supported CO Oxidation Catalysts: Evidence from X-ray Absorption Spectroscopy , 2002 .

[69]  D. Goodman,et al.  Structure sensitivity of CO oxidation over model Au/TiO22 catalysts , 1998 .

[70]  G. Tendeloo,et al.  Au particles supported on (110) anatase-TiO2 , 2001 .

[71]  M. Gordon,et al.  Binding of propene on small gold clusters and on Au(111): simple rules for binding sites and relative binding energies. , 2004, The Journal of chemical physics.

[72]  Matthias Fischer,et al.  Direct observation of key reaction intermediates on gold clusters. , 2003, Journal of the American Chemical Society.

[73]  Gyeong S. Hwang,et al.  ADSORPTION OF AU ATOMS ON STOICHIOMETRIC AND REDUCED TIO2 (1 1 0) RUTILE SURFACES: A FIRST PRINCIPLES STUDY , 2003 .

[74]  E. McFarland,et al.  Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania. , 2004, Chemical communications.

[75]  C. Louis,et al.  Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea , 2004 .

[76]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[77]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[78]  S. Overbury,et al.  Comparison of Au Catalysts Supported on Mesoporous Titania and Silica: Investigation of Au Particle Size Effects and Metal-Support Interactions , 2004 .

[79]  J. Nørskov,et al.  Theoretical study of the Au/TiO2(110) interface , 2002 .

[80]  Debra R Rolison,et al.  Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity , 2003, Science.

[81]  Bjørk Hammer,et al.  Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100) , 2004 .

[82]  B. Gates,et al.  Activation of Au/γ-Al2O3 Catalysts for CO Oxidation: Characterization by X-ray Absorption Near Edge Structure and Temperature Programmed Reduction , 2004 .

[83]  F. Porta,et al.  Selective liquid phase oxidation using gold catalysts , 2000 .

[84]  Sungsik Lee,et al.  CO oxidation on Aun/TiO2 catalysts produced by size-selected cluster deposition. , 2004, Journal of the American Chemical Society.

[85]  D. Goodman Model catalysts: from imagining to imaging a working surface , 2003 .

[86]  David Thompson,et al.  Gold-catalysed oxidation of carbon monoxide , 2000 .

[87]  D. Andreeva Low temperature water gas shift over gold catalysts , 2002 .

[88]  M. Mavrikakis,et al.  Adsorption and Dissociation of O2 on Gold Surfaces: Effect of Steps and Strain , 2003 .

[89]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[90]  B. Gates,et al.  Mononuclear AuIII and AuI Complexes Bonded to Zeolite NaY: Catalysts for CO Oxidation at 298 K , 2004 .

[91]  H. Freund,et al.  Surface chemistry of catalysis by gold , 2004 .

[92]  Koji Kariya-city Aichi-pref. Tanaka,et al.  Electronic structures of Au onTiO2(110)by first-principles calculations , 2004 .

[93]  S. Shiraki,et al.  Investigation of the electronic interaction between TiO2(110) surfaces and Au clusters by PES and STM , 2004 .

[94]  D. Meier,et al.  The influence of metal cluster size on adsorption energies: CO adsorbed on Au clusters supported on TiO2. , 2004, Journal of the American Chemical Society.

[95]  H. Freund,et al.  CO adsorption on oxide supported gold: from small clusters to monolayer islands and three-dimensional nanoparticles , 2004 .

[96]  G. Mills,et al.  Oxygen adsorption on Au clusters and a rough Au(111) surface: The role of surface flatness, electron confinement, excess electrons, and band gap , 2003 .

[97]  D. Buchanan,et al.  Hydrogenation over supported gold catalysts , 1973 .

[98]  M. Bäumer,et al.  Size and Support Effects for CO Adsorption on Gold Model Catalysts , 2003 .

[99]  C. Mullins,et al.  Reaction of CO with molecularly chemisorbed oxygen on TiO2-supported gold nanoclusters. , 2004, Journal of the American Chemical Society.

[100]  Tunneling spectroscopy on silver clusters at T=5 K: size dependence and spatial energy shifts , 2000 .

[101]  D. King,et al.  Role of nanostructured dual-oxide supports in enhanced catalytic activity: theory of CO oxidation over Au/IrO2/TiO2. , 2004, Physical review letters.

[102]  A. Chiorino,et al.  FTIR Study of CO Oxidation on Au/TiO2 at 90 K and Room Temperature. An Insight into the Nature of the Reaction Centers , 2000 .

[103]  D. Goodman,et al.  The role of F-centers in catalysis by Au supported on MgO. , 2005, Journal of the American Chemical Society.

[104]  T. Tabakova,et al.  FTIR Study of the Low-Temperature Water–Gas Shift Reaction on Au/Fe2O3 and Au/TiO2 Catalysts , 1999 .

[105]  H. Freund,et al.  Quantization of electronic states in individual oxide-supported silver particles , 2004 .

[106]  Horia Metiu,et al.  Adsorption of gold on stoichiometric and reduced rutile TiO2 (110) surfaces , 2003 .

[107]  T. Madey,et al.  GROWTH, MORPHOLOGY, INTERFACIAL EFFECTS AND CATALYTIC PROPERTIES OF Au ON TiO2 , 2001 .

[108]  J. Hrbek,et al.  ACTIVATION OF AU NANOPARTICLES ON OXIDE SURFACES: REACTION OF SO2 WITH AU/MGO(100) , 2003 .

[109]  M. S. Chen,et al.  The Structure of Catalytically Active Gold on Titania , 2004, Science.

[110]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .