Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning

Abstract A continuum thermodynamics framework is devised to model the evolution of ferroelectric domain structures. The theory falls into the class of phase-field or diffuse-interface modeling approaches. Here a set of micro-forces and governing balance laws are postulated and applied within the second law of thermodynamics to identify the appropriate material constitutive relationships. The approach is shown to yield the commonly accepted Ginzburg–Landau equation for the evolution of the polarization order parameter. Within the theory a form for the free energy is postulated that can be applied to fit the general elastic, piezoelectric and dielectric properties of a ferroelectric material near its spontaneously polarized state. Thereafter, a principle of virtual work is specified for the theory and is implemented to devise a finite element formulation. The theory and numerical methods are used to investigate the fields near straight 180° and 90° domain walls and to determine the electromechanical pinning strength of an array of line charges on 180° and 90° domain walls.

[1]  Kaushik Bhattacharya,et al.  A computational model of ferroelectric domains. Part I: model formulation and domain switching , 2005 .

[2]  K. Bhattacharya,et al.  Domain patterns and macroscopic behaviour of ferroelectric materials , 2001 .

[3]  J. Wang,et al.  5474 - ON THE FRACTURE TOUGHNESS OF FERROELECTRIC CERAMICS WITH ELECTRIC FIELD APPLIED PARALLEL TO THE CRACK FRONT , 2004 .

[4]  Morton E. Gurtin,et al.  Continuum theory of thermally induced phase transitions based on an order parameter , 1993 .

[5]  R. Toupin The Elastic Dielectric , 1956 .

[6]  Shenyang Y. Hu,et al.  Effect of electrical boundary conditions on ferroelectric domain structures in thin films , 2002 .

[7]  L. Chen,et al.  Phase-field model of domain structures in ferroelectric thin films , 2001 .

[8]  Department of Physics,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .

[9]  Cross,et al.  Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. , 1991, Physical review. B, Condensed matter.

[10]  M. Kosec,et al.  4 . 1 . 7 FERROELECTRIC THIN FILMS , 2022 .

[11]  S. Y.C. Domain patterns and macroscopic behaviour of ferroelectric materials , 2002 .

[12]  Morton E. Gurtin,et al.  Dynamic solid-solid transitions with phase characterized by an order parameter , 1994 .

[13]  R. Birss,et al.  The elastic dielectric. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[15]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[16]  K. Bhattacharya,et al.  Depletion layers and domain walls in semiconducting ferroelectric thin films. , 2005, Physical review letters.

[17]  Masanori Okuyama,et al.  Ferroelectric Thin Films , 2005 .

[18]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[19]  Nambu,et al.  Domain formation and elastic long-range interaction in ferroelectric perovskites. , 1994, Physical review. B, Condensed matter.

[20]  Chad M. Landis,et al.  A new finite‐element formulation for electromechanical boundary value problems , 2002 .

[21]  Chad M. Landis,et al.  Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics , 2002 .

[22]  R. D. Nasby,et al.  Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue , 1994 .

[23]  M. Grimsditch,et al.  The elastic and electromechanical properties of tetragonal BaTiO3 single crystals , 1991 .

[24]  Norman A. Fleck,et al.  A constitutive model for ferroelectric polycrystals , 1999 .

[25]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[26]  W. Cao,et al.  Influence of dipolar defects on switching behavior in ferroelectrics , 2000 .

[27]  Don Berlincourt,et al.  Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate , 1958 .

[28]  Herbert Balke,et al.  On the local and average energy release in polarization switching phenomena , 2001 .

[29]  Ab initio study of ferroelectric domain walls in PbTiO 3 , 2001, cond-mat/0109257.

[30]  Robert Bruce Lindsay,et al.  Physical Properties of Crystals , 1957 .

[31]  Dan Givoli,et al.  A finite element method for large domains , 1989 .

[32]  Fei Xu,et al.  Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films , 2001 .

[33]  R. Cohen,et al.  ELECTRONIC-STRUCTURE STUDIES OF THE DIFFERENCES IN FERROELECTRIC BEHAVIOR OF BATIO3 AND PBTIO3 , 1992 .

[34]  W. Cao,et al.  Size dependence of domain patterns in a constrained ferroelectric system , 2001 .

[35]  K. Bathe Finite Element Procedures , 1995 .

[36]  C. Landis,et al.  Mechanics of Materials and Structures EFFECTS OF IN-PLANE ELECTRIC FIELDS ON THE TOUGHENING BEHAVIOR OF FERROELECTRIC CERAMICS , 2007 .

[37]  Chad M. Landis,et al.  Energetically consistent boundary conditions for electromechanical fracture , 2004 .

[38]  M. E. Gurtin,et al.  A general theory of curved deformable interfaces in solids at equilibrium , 1998 .

[39]  Shenyang Y. Hu,et al.  Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films , 2002 .

[40]  Long-Qing Chen,et al.  Computer simulation of 90" ferroelectric domain formation in two-dimensions , 1997 .

[41]  R. McMeeking,et al.  Electrostatic Forces and Stored Energy for Deformable Dielectric Materials , 2005 .

[42]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[43]  Tong-Yi Zhang,et al.  Phase-field simulations of ferroelectric/ferroelastic polarization switching , 2004 .

[44]  K. Bhattacharya,et al.  A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning , 2005 .