Identification and Characterization of Drosophila Relatives of the Yeast Transcriptional Activator SNF 2 / SWI 2

[1]  R. Mann,et al.  Transcription factor paralogs orchestrate alternative gene regulatory networks by context-dependent cooperation with multiple cofactors , 2022, Nature Communications.

[2]  Paul A. Khavari,et al.  BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription , 1993, Nature.

[3]  M. Yaniv,et al.  A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. , 1993, The EMBO journal.

[4]  S. Henikoff Transcriptional activator components and poxvirus DNA-dependent ATPases comprise a single family. , 1993, Trends in biochemical sciences.

[5]  M. Carlson,et al.  The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. , 1993, Genes & development.

[6]  M. Horikoshi,et al.  The p250 subunit of native TATA box-binding factor TFIID is the cell-cycle regulatory protein CCG1 , 1993, Nature.

[7]  J. Kennison Transcriptional activation of Drosophila homeotic genes from distant regulatory elements. , 1993, Trends in genetics : TIG.

[8]  J. Hoeijmakers,et al.  Structure and expression of the excision repair gene ERCC6, involved in the human disorder Cockayne's syndrome group B. , 1993, Nucleic acids research.

[9]  I. Herskowitz,et al.  Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. , 1992, Science.

[10]  Steven A. Brown,et al.  Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. , 1992, Genes & development.

[11]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Bienz,et al.  Sharp anterior boundary of homeotic gene expression conferred by the fushi tarazu protein. , 1992, The EMBO journal.

[13]  R. Nussbaum,et al.  Cloning of human and bovine homologs of SNF2/SWI2: a global activator of transcription in yeast S. cerevisiae. , 1992, Nucleic acids research.

[14]  M. Carlson,et al.  Yeast SNF2/SWI2, SNF5, and SNF6 proteins function coordinately with the gene-specific transcriptional activators GAL4 and Bicoid. , 1992, Genes & development.

[15]  R. Paro,et al.  Analysis of the functional role of the Polycomb chromo domain in Drosophila melanogaster. , 1992, Genes & development.

[16]  C. Dollard,et al.  The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. , 1992, Nucleic acids research.

[17]  A. Travers The reprogramming of transcriptional competence , 1992, Cell.

[18]  M. Carlson,et al.  An essential Saccharomyces cerevisiae gene homologous to SNF2 encodes a helicase-related protein in a new family , 1992, Molecular and cellular biology.

[19]  I. Herskowitz,et al.  Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription , 1992, Cell.

[20]  Thomas C. Kaufman,et al.  brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2 SWI2 , 1992, Cell.

[21]  P Linder,et al.  D‐E‐A‐D protein family of putative RNA helicases , 1992, Molecular microbiology.

[22]  W. Bender,et al.  Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products. , 1992, Development.

[23]  J. Kennison,et al.  Trans-regulation of homeotic genes in Drosophila. , 1992, The New biologist.

[24]  D. Glover,et al.  Chromosome tangling and breakage at anaphase result from mutations in lodestar, a Drosophila gene encoding a putative nucleoside triphosphate-binding protein. , 1991, Genes & development.

[25]  F. Winston,et al.  The SNF2, SNF5 and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. , 1991, Genetics.

[26]  M. Scott,et al.  The arflike gene encodes an essential GTP-binding protein in Drosophila. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Carlson,et al.  Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[29]  Roger Brent,et al.  DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9 , 1989, Cell.

[30]  I. Herskowitz,et al.  Identification of a DNA binding factor involved in cell-cycle control of the yeast HO gene , 1989, Cell.

[31]  J. Kennison,et al.  Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. Mullis,et al.  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. , 1988, Science.

[33]  M. Levine,et al.  Gap genes define the limits of antennapedia and bithorax gene expression during early development in Drosophila. , 1988, The EMBO journal.

[34]  Mark Ptashne,et al.  Mutants of GAL4 protein altered in an activation function , 1987, Cell.

[35]  I. Herskowitz,et al.  Activation of the yeast HO gene by release from multiple negative controls , 1987, Cell.

[36]  R. Lehmann,et al.  A gap gene, hunchback, regulates the spatial expression of Ultrabithorax , 1986, Cell.

[37]  M. Levine,et al.  Spatial regulation of antennapedia and bithorax gene expression by the Polycomb locus in Drosophila , 1986, Cell.

[38]  L. Kauvar,et al.  The engrailed locus of drosophila: Structural analysis of an embryonic transcript , 1985, Cell.

[39]  M. Carlson,et al.  Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. , 1984, Genetics.

[40]  P. O. O'Connell,et al.  Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene , 1984, Nucleic Acids Res..

[41]  M. Scott,et al.  The molecular organization of the Antennapedia locus of drosophila , 1983, Cell.

[42]  A. Feinberg,et al.  A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. , 1983, Analytical biochemistry.

[43]  F. Kafatos,et al.  A high speed, high capacity homology matrix: zooming through SV40 and polyoma. , 1982, Nucleic acids research.

[44]  H. Birnboim,et al.  A rapid alkaline extraction procedure for screening recombinant plasmid DNA. , 1979, Nucleic acids research.

[45]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[46]  G. Crabtree,et al.  brg1: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. , 1994, Developmental biology.

[47]  M. Scott,et al.  Downstream of the homeotic genes. , 1992, The New biologist.

[48]  R. F. Smith,et al.  Pattern-induced multi-sequence alignment (PIMA) algorithm employing secondary structure-dependent gap penalties for use in comparative protein modelling. , 1992, Protein engineering.

[49]  R. Paro,et al.  The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[50]  R. Paro,et al.  Imprinting a determined state into the chromatin of Drosophila. , 1990, Trends in genetics : TIG.

[51]  G. Olsen,et al.  Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. , 1990, Advances in genetics.

[52]  I. Duncan,et al.  The bithorax complex. , 1987, Annual review of genetics.

[53]  J. McKeon,et al.  Interactions of the Polycomb group of genes with homeotic loci of Drosophila , 2022 .