New Hg2+ and Cu2+ selective chromo- and fluoroionophore based on a bichromophoric azine.

[graph: see text] A new probe, 1,4-bis(1-pyrenyl)-2,3-diaza-1,3-butadiene, selectively senses Hg2+ and Cu2+ through two different channels: the yellow-deep-pink color change and the enhancement of the fluorescence with the red shift of the excimer emission, which can visually be discernible by a green fluorescence in the presence of Hg2+ and an orange fluorescence in the presence of Cu2+.

[1]  F. Winnik PHOTOPHYSICS OF PREASSOCIATED PYRENES IN AQUEOUS POLYMER SOLUTIONS AND IN OTHER ORGANIZED MEDIA , 1993 .

[2]  Luca Prodi,et al.  Luminescent chemosensors for transition metal ions , 2000 .

[3]  K. Rurack,et al.  A new fluorescence probe for trace metal ions: Cation-dependent spectroscopic properties , 1993, Journal of Fluorescence.

[4]  I. Leray,et al.  Design principles of fluorescent molecular sensors for cation recognition , 2000 .

[5]  D. McClure,et al.  Spin‐Orbit Interaction in Aromatic Molecules , 1952 .

[6]  J. Choe,et al.  New Hg2+-selective fluoroionophores derived from p-tert-butylcalix[4]arene–azacrown ethers , 2002 .

[7]  J. Lehn,et al.  Cryptates. XXV. Stability and selectivity of cation inclusion complexes of polyaza‐macrobicyclic ligands. Selective complexation of toxic heavy metal cations , 1978 .

[8]  L. A. Ochrymowycz,et al.  Kinetic and thermodynamic measurements on branched amino polythiaether ligands: a family of complexing agents analogous to EDTA and NTA exhibiting enhanced selectivity for copper(II) , 1992 .

[9]  E. Wehry,et al.  Interactions of transition-metal ions with photoexcited states of flavins. Fluorescence quenching studies. , 1972, Journal of the American Chemical Society.

[10]  A. Beeby,et al.  Photochemical investigations of functionalised 1,4,7,10-tetraazacyclododecane ligands incorporating naphthyl chromophores , 1996 .

[11]  Stephen J Lippard,et al.  A "turn-on" fluorescent sensor for the selective detection of mercuric ion in aqueous media. , 2003, Journal of the American Chemical Society.

[12]  K. Rurack,et al.  Cation-triggered ‘switching on’ of the red/near infra-red (NIR) fluorescence of rigid fluorophore–spacer–receptor ionophores , 2000 .

[13]  A. P. Silva,et al.  Combining luminescence, coordination and electron transfer for signalling purposes , 2000 .

[14]  J. Williams,et al.  Luminescence behaviour of cadmium, lead, zinc, copper, nickel and lanthanide complexes of octadentate macrocyclic ligands bearing naphthyl chromophores , 1995 .

[15]  C. Kay,et al.  Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III. , 2000, Biochemistry.

[16]  T. Shepherd,et al.  Quenching of excited singlet states by metal ions , 1977 .

[17]  M. Shortreed,et al.  Fluorescent fiber-optic calcium sensor for physiological measurements. , 1996, Analytical chemistry.

[18]  Anthony W. Czarnik,et al.  Fluorimetric chemodosimetry. Mercury(II) and silver(I) indication in water via enhanced fluorescence signaling , 1992 .

[19]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[20]  Norio Teramae,et al.  Fluorescence Sensing of Anions via Intramolecular Excimer Formation in a Pyrophosphate-Induced Self-Assembly of a Pyrene-Functionalized Guanidinium Receptor , 1999 .