MAC level Throughput comparison: 802.11ac vs. 802.11n

We compare between the Throughput performance of IEEE 802.11n and IEEE 802.11ac under the same PHY conditions and in the three aggregation schemes that are possible in the MAC layer of the two protocols. We find that for an error-free channel 802.11ac outperforms 802.11n due to its larger frame sizes, except for the case where there is a limit on the number of aggregated packets. In an error-prone channel the bit error rate sometimes determines the optimal frame sizes. Together with the limit on the number of aggregated packets, these two factors limit the advantage of 802.11ac.

[1]  Minyoung Park,et al.  IEEE 802.11ac: Dynamic Bandwidth Channel Access , 2011, 2011 IEEE International Conference on Communications (ICC).

[2]  Mark Stamp,et al.  Evaluations and Enhancements in 802.11n WLANs â•fi Error-Sensitive Adaptive Frame Aggregation , 2014 .

[3]  Subramaniam Shamala,et al.  An Enhanced A-MSDU Frame Aggregation Scheme for 802.11n Wireless Networks , 2012, Wirel. Pers. Commun..

[4]  Zheng Chang,et al.  IEEE 802.11ac: Enhancements for very high throughput WLANs , 2011, 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications.

[5]  T Selvam,et al.  A frame aggregation scheduler for IEEE 802.11n , 2010, 2010 National Conference On Communications (NCC).

[6]  Jaume Barceló,et al.  On the Performance of Packet Aggregation in IEEE 802.11ac MU-MIMO WLANs , 2012, IEEE Communications Letters.

[7]  Ha Cheol Lee A MAC Throughput in the Wireless LAN , 2012 .

[8]  Chih-Yu Wang,et al.  IEEE 802.11n MAC Enhancement and Performance Evaluation , 2009, Mob. Networks Appl..

[9]  L. B. Milstein,et al.  On the accuracy of a first-order Markov model for data transmission on fading channels , 1995, Proceedings of ICUPC '95 - 4th IEEE International Conference on Universal Personal Communications.

[10]  Youngsoo Kim,et al.  Adaptive two-level frame aggregation in IEEE 802.11n WLAN , 2012, 2012 18th Asia-Pacific Conference on Communications (APCC).

[11]  Robert A. Scholtz,et al.  Performance Analysis of , 1998 .

[12]  Yousri Daldoul,et al.  IEEE 802.11n aggregation performance study for the multicast , 2011, 2011 IFIP Wireless Days (WD).

[13]  John J. Lemmon Wireless Link Statistical Bit Error Model , 2002 .

[14]  Hsiao-Hwa Chen,et al.  IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs , 2008, IEEE Wireless Communications.

[15]  Vincent W. S. Wong,et al.  WSN01-1: Frame Aggregation and Optimal Frame Size Adaptation for IEEE 802.11n WLANs , 2006, IEEE Globecom 2006.

[16]  Dan Keun Sung,et al.  Effect of Frame Aggregation on the Throughput Performance of IEEE 802.11n , 2008, 2008 IEEE Wireless Communications and Networking Conference.

[17]  Tapani Ristaniemi,et al.  Performance Analysis of IEEE 802.11ac DCF with Hidden Nodes , 2012, 2012 IEEE 75th Vehicular Technology Conference (VTC Spring).

[18]  James Gross,et al.  Multi-user OFDMA Frame Aggregation for Future Wireless Local Area Networking , 2009, Networking.

[19]  A. Kesselman,et al.  Performance analysis of A-MPDU and A-MSDU aggregation in IEEE 802.11n , 2007, 2007 IEEE Sarnoff Symposium.

[20]  B. Zieliński Efficiency analysis of IEEE 802.11 protocol with block acknowledge and frame aggregation , 2011 .

[21]  Shoba Krishnan,et al.  FRAME AGGREGATION MECHANISM FOR HIGH - THROUGHPUT 802.11 N WLANS , 2012 .

[22]  Yang Xiao,et al.  Throughput and delay limits of IEEE 802.11 , 2002, IEEE Communications Letters.

[23]  Hongyuan Chen Throughput Analysis of Block-Ack in IEEE 802.11n , 2012 .

[24]  Ilenia Tinnirello,et al.  Efficiency analysis of burst transmissions with block ACK in contention-based 802.11e WLANs , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.