Robust Estimation of State Occupancy Probabilities for Interval-Censored Multistate Data: An Application Involving Spondylitis in Psoriatic Arthritis

We formulate a three-state illness-death model to estimate the proportion of psoriatic arthritis patients developing spondylitis over time. Data from a longitudinal cohort of patients are available but the transitions in this model are interval-censored for the onset of spondylitis; times of deaths are right-censored. Robust methods for estimating the prevalence of spondylitis over time are described based on differences in marginal survivor functions for state entry times in the spirit of Pepe et al. (1991). Nonparametric estimates (Turnbull, 1976) and local likelihood estimates (Loader, 1999) of the marginal distributions are derived. Multiplicative intensity Markov regression models are used to examine covariate effects.

[1]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[2]  Gregg E. Dinse An Alternative to Efron's Redistribution-of-Mass Construction of the Kaplan—Meier Estimator , 1985 .

[3]  Rebecca A. Betensky,et al.  Local Likelihood Analysis of Survival Data With Censored Intermediate Events , 2001 .

[4]  D. Gladman,et al.  Psoriatic spondyloarthropathy: a long term prospective study. , 1988, Annals of the rheumatic diseases.

[5]  B. Efron The two sample problem with censored data , 1967 .

[6]  J. Kalbfleisch,et al.  The Analysis of Panel Data under a Markov Assumption , 1985 .

[7]  Halina Frydman,et al.  Nonparametric estimation of a Markov ‘illness-death’ process from interval-censored observations, with application to diabetes survival data , 1995 .

[8]  M. Pepe,et al.  A qualifier Q for the survival function to describe the prevalence of a transient condition. , 1991, Statistics in medicine.

[9]  O. Steinbrocker,et al.  Therapeutic criteria in rheumatoid arthritis. , 1949, Journal of the American Medical Association.

[10]  C. Geyer,et al.  Maximum likelihood for interval censored data: Consistency and computation , 1994 .

[11]  Rebecca A Betensky,et al.  Testing for Dependence Between Failure Time and Visit Compliance with Interval‐Censored Data , 2002, Biometrics.

[12]  John P Klein,et al.  Regression Modeling of Competing Risks Data Based on Pseudovalues of the Cumulative Incidence Function , 2005, Biometrics.

[13]  Louise Ryan,et al.  A Three-state Multiplicative Model for Rodent Tumorigenicity Experiments , 1993 .

[14]  J Grüger,et al.  The validity of inferences based on incomplete observations in disease state models. , 1991, Biometrics.

[15]  J F Lawless,et al.  Multi-state Markov models for analysing incomplete disease history data with illustrations for HIV disease. , 1994, Statistics in medicine.

[16]  Somnath Datta,et al.  Validity of the Aalen–Johansen estimators of stage occupation probabilities and Nelson–Aalen estimators of integrated transition hazards for non-Markov models , 2001 .

[17]  V T Farewell,et al.  Clinical indicators of progression in psoriatic arthritis: multivariate relative risk model. , 1995, The Journal of rheumatology.

[18]  R. Peto,et al.  Experimental Survival Curves for Interval‐Censored Data , 1973 .

[19]  G A Satten,et al.  Estimating the Extent of Tracking in Interval‐Censored Chain‐Of‐Events Data , 1999, Biometrics.

[20]  G. Hortobagyi,et al.  Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. , 1996, The New England journal of medicine.

[21]  H. Frydman Semiparametric estimation in a three-state duration-dependent Markov model from interval-censored observations with application to AIDS data. , 1995, Biometrics.

[22]  W M O'Fallon,et al.  Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. , 1990, The New England journal of medicine.

[23]  B. Turnbull The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .

[24]  D. Gladman,et al.  Psoriatic spondyloarthropathy in men and women: a clinical, radiographic, and HLA study. , 1992, Clinical and investigative medicine. Medecine clinique et experimentale.

[25]  Guohua Pan,et al.  Local Regression and Likelihood , 1999, Technometrics.

[26]  M S Pepe,et al.  Modelling prevalence of a condition: chronic graft-versus-host disease after bone marrow transplantation. , 1997, Statistics in medicine.

[27]  Halina Frydman,et al.  A Nonparametric Estimation Procedure for a Periodically Observed Three‐State Markov Process, with Application to Aids , 1992 .

[28]  D. Tolusso Robust Methods for Interval-Censored Life History Data , 2008 .

[29]  Jens Præstgaard Nonparametric estimation of actuarial values , 1991 .

[30]  M. Wand,et al.  Local EM Estimation of the Hazard Function for Interval‐Censored Data , 1999, Biometrics.

[31]  T. Duchesne,et al.  Local likelihood density estimation for interval censored data , 2005 .

[32]  Margaret S. Pepe,et al.  Inference for Events with Dependent Risks in Multiple Endpoint Studies , 1991 .

[33]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[34]  O Borgan,et al.  Covariate Adjustment of Event Histories Estimated from Markov Chains: The Additive Approach , 2001, Biometrics.

[35]  R. Betensky Redistribution algorithms for censored data , 2000 .

[36]  D P Byar,et al.  The Veterans Administration Study of Chemoprophylaxis for Recurrent Stage I Bladder Tumours: Comparisons of Placebo, Pyridoxine and Topical Thiotepa , 1980 .

[37]  Richard J Cook,et al.  A Multistate Model for Bivariate Interval‐Censored Failure Time Data , 2008, Biometrics.

[38]  J. Klein,et al.  Generalised linear models for correlated pseudo‐observations, with applications to multi‐state models , 2003 .