Mathematical Modeling and Computer-Aided Manufacturing of Rough Surfaces for Experimental Study of Seafloor Scattering

Diverse aspects of stochastic processes, time-series analysis, fractal geometry, and manufacturing technology are brought together to provide a unified theoretical framework for the mathematical characterization and physical fabrication of scale-model representations of the rough ocean bottom. These scale models can be used to validate the predictions of interface-scattering theories, particularly those relating to the dependence of scattering strength on roughness parameters. In acoustical oceanography, rough surfaces are conventionally described in terms of power-spectral density (PSD) or fractal dimension. Here, recently developed concepts describing modified power-law PSD and approximately self-affine stochastic fractals are used to account for issues of finite sample size and finite manufacturing resolution. The large- and small- bandwidth restrictions that these issues inherently impose are related to their effects on the properties of surfaces as characterized both mathematically and by visual observation. This development provides the groundwork for numerical generation of surfaces, using spectral methods, and their physical manufacture, using computer-aided manufacturing (CAM) techniques. Effects of the spectral method of numerical generation on the statistics of generated topography are detailed. A manufacturing technique using a computer numerically controlled (CNC) milling machine is discussed and topography-specific guidelines for accurate manufacture of rough surfaces are prescribed.

[1]  Anthony W. England,et al.  Special problems in the estimation of power-law spectra as applied to topographical modeling , 1994, IEEE Trans. Geosci. Remote. Sens..

[2]  D. Jackson,et al.  The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum , 1988 .

[3]  Peter H. Dahl,et al.  Overview of SAX99: environmental considerations , 2001 .

[4]  Jiunn-Jong Wu,et al.  Spectral analysis for the effects of stylus tip curvature on measuring fractal profiles , 2000 .

[5]  Antonio G. García,et al.  Orthogonal Sampling Formulas: A Unified Approach , 2000, SIAM Rev..

[6]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[7]  Chuck Zhang,et al.  Prediction and Compensation of Dynamic Errors for Coordinate Measuring Machines , 2002 .

[8]  K. B. Briggs,et al.  Microtopographical roughness of shallow-water continental shelves , 1989 .

[9]  P. Milani,et al.  Fractal analysis of sampled profiles: systematic study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  D. Hristopulos Permissibility of fractal exponents and models of band-limited two-point functions for fGn and fBm random fields , 2003 .

[11]  Alexander G. Voronovich Small slope approximation in wave scattering theory for rough surfaces , 1985 .

[12]  P. Phu,et al.  Experimental studies of millimeter-wave scattering in discrete random media and from rough surfaces - Summary , 1996 .

[13]  M. Berry,et al.  On the Weierstrass-Mandelbrot fractal function , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  Jiunn-Jong Wu Spectral analysis for the effects of stylus tip curvature on measuring isotropic rough surfaces , 2002 .

[15]  Brian R. Hunt,et al.  The Hausdorff dimension of graphs of Weierstrass functions , 1998 .

[16]  Greenside,et al.  Implication of a power-law power-spectrum for self-affinity. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[17]  Sanjeev Bedi,et al.  Computer-aided 5-axis machining , 2001 .

[18]  J. G. Zomig Physical Modeling of Underwater Acoustics , 1979 .

[19]  D. Wurmser,et al.  Small-slope scattering from rough elastic ocean floors: general theory and computational algorithm. , 2001, The Journal of the Acoustical Society of America.

[20]  K. J. Stout,et al.  Some performance characteristics of a multi-axis touch trigger probe , 1997 .

[21]  R. Beyer,et al.  Reflection of Sound from Randomly Rough Surfaces , 1960 .

[22]  Dennis E. Hayes,et al.  Quantitative Methods for Analyzing the Roughness of the Seafloor (Paper 5R0105) , 1985 .

[23]  N. Neidell SPECTRAL STUDIES OF MARINE GEOPHYSICAL PROFILES , 1966 .

[24]  Murray Rosenblatt,et al.  Some comments on narrow band-pass filters , 1961 .

[25]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[26]  K. Weierstrass,et al.  Über Continuirliche Functionen Eines Reellen Arguments, die für Keinen Werth des Letzteren Einen Bestimmten Differentialquotienten Besitzen , 1988 .

[27]  Kant Statistics of approximately self-affine fractals: Random corrugated surface and time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  J. Summers,et al.  Characterization and Fabrication of Synthetic Rough Surfaces for Acoustical Scale-Model Experiments , 2005 .

[29]  Jiunn-Jong Wu Simulation of rough surfaces with FFT , 2000 .

[30]  Tilmann Gneiting,et al.  Stochastic Models That Separate Fractal Dimension and the Hurst Effect , 2001, SIAM Rev..

[31]  S. Hough On the use of spectral methods for the determination of fractal dimension , 1989 .

[32]  J. Woods,et al.  Probability and Random Processes with Applications to Signal Processing , 2001 .

[33]  Measurement , 2007 .

[34]  M. Sahimi,et al.  Characterization of long-range correlations in complex distributions and profiles , 1997 .

[35]  S. Zucker,et al.  Evaluating the fractal dimension of profiles. , 1989, Physical review. A, General physics.

[36]  Kristinka Ivanova,et al.  Description of surface roughness as an approximate self-affine random structure , 1995 .

[37]  R. J. Soukup,et al.  Characterization of acoustic interactions with a scale model of an elastic ocean bottom using deterministic and stochastic representations of the rough surface , 2006, 2006 IEEE US/EU Baltic International Symposium.

[38]  E. Church Fractal surface finish. , 1988, Applied optics.

[39]  Yordanov,et al.  Self-affinity of time series with finite domain power-law power spectrum. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Adrian Papamarcou,et al.  On estimating the spectral exponent of fractional Brownian motion , 1995, IEEE Trans. Inf. Theory.

[41]  Kevin L. Williams,et al.  Characterization of interface roughness of rippled sand off Fort Walton Beach, Florida , 2002 .

[42]  R. Soukup,et al.  Backscatter from a limestone seafloor at 2-3.5 kHz: measurements and modeling. , 2003, The Journal of the Acoustical Society of America.

[43]  Patrick Flandrin,et al.  On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.

[44]  Stochastic Cross-Sections Based on the Small Slope Approximation: Theory , 2005 .

[45]  Thomas H. Jordan,et al.  Stochastic Modeling of Seafloor Morphology: Inversion of Sea Beam Data for Second-Order Statistics , 1988 .

[46]  Gerald A. Sandness,et al.  Scattering from a corrugated surface: Comparison between experiment, Helmholtz–Kirchhoff theory, and the facet‐ensemble method , 1983 .

[47]  J. Summers,et al.  Topography measurement of scale-model representations of the rough ocean bottom by touch-trigger probe and its implications for spectral characterization , 2006, OCEANS 2006.

[48]  E. Thorsos The Validity of the Kirchhoff Approximation for Rough Surface Scattering Using a Gaussian Roughness Spectrum , 2004 .

[49]  R. Dashen,et al.  Calculations of acoustic scattering from the ocean surface , 1990 .

[50]  J. C. Dainty,et al.  Theory of Wave Scattering from Random Rough Surfaces , 1991 .

[51]  D. Whitehouse,et al.  The properties of random surfaces of significance in their contact , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[52]  George Sugihara,et al.  Fractals: A User's Guide for the Natural Sciences , 1993 .

[53]  D. Gibert,et al.  Scattering from a fractal surface: acoustical experiments and comparison with near-nadir models , 2004 .

[54]  Zhenhua Xiong,et al.  Probe Radius Compensation of Workpiece Localization , 2003 .

[55]  G. Hardy Weierstrass’s non-differentiable function , 1916 .

[56]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[57]  Victor Solo,et al.  Intrinsic random functions and the paradox of l/f noise , 1992 .

[58]  Jorge Herbert de Lira,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[59]  Zuomin Dong,et al.  Optimal rough machining of sculptured parts on a CNC milling machine , 1993 .

[60]  S. Orey Gaussian sample functions and the Hausdorff dimension of level crossings , 1970 .

[61]  Alberto Malinverno,et al.  Segmentation of topographic profiles of the seafloor based on a self-affine model , 1989 .

[62]  A. Malinverno,et al.  A characterization of the spectral density of residual ocean floor topography , 1988 .

[63]  Gudmundur S. Bodvarsson,et al.  Fractal study and simulation of fracture roughness , 1990 .

[64]  Stephen R. Brown,et al.  Broad bandwidth study of the topography of natural rock surfaces , 1985 .

[65]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[66]  T. H. Bell,et al.  Statistical features of sea-floor topography , 1975 .

[67]  Shinozuka,et al.  Numerical method for colored-noise generation and its application to a bistable system. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[68]  Joon-Jea Sung,et al.  A transient noise model for frequency-dependent noise sources , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[69]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[70]  Steven D. Phillips,et al.  Practical aspects of touch-trigger probe error compensation , 1997 .

[71]  Jiunn-Jong Wu,et al.  Spectral analysis for the effect of stylus tip curvature on measuring rough profiles , 1999 .

[72]  Giorgio Franceschetti,et al.  Fractals and the small perturbation scattering model , 1999 .

[73]  O. Yordanov,et al.  Self-affine random surfaces , 2002 .

[74]  Gaetano Canepa,et al.  Small-slope simulation of acoustic backscatter from a physical model of an elastic ocean bottom. , 2007, The Journal of the Acoustical Society of America.

[75]  R. Sayles,et al.  Surface topography as a nonstationary random process , 1978, Nature.

[76]  J. Hannay,et al.  Topography of random surfaces , 1978, Nature.

[77]  G. A. Hunt Random Fourier transforms , 1951 .

[78]  C. W. Horton,et al.  Model Studies on the Scattering of Acoustic Waves from a Rough Surface , 1967 .