An observation on the uniform preconditioners for the mixed Darcy problem

When solving a multi-physics problem one often decomposes a monolithic system into simpler, frequently single-physics, subproblems. A comprehensive solution strategy may commonly be attempted, then, by means of combining strategies devised for the constituent subproblems. When decomposing the monolithic problem, however, it may be that requiring a particular scaling for one subproblem enforces an undesired scaling on another. In this manuscript we consider the H(div)-based mixed formulation of the Darcy problem as a single-physics subproblem; the hydraulic conductivity, K, is considered intrinsic and not subject to any rescaling. Preconditioners for such porous media flow problems in mixed form are frequently based on H(div) preconditioners rather than the pressure Schur complement. We show that when the hydraulic conductivity, K, is small the pressure Schur complement can also be utilised for H(div)-based preconditioners. The proposed approach employs an operator preconditioning framework to establish a robust, K- and h-uniform block preconditioner. The mapping properties of the continuous operator are a key component in applying the theoretical framework point of view. As such, a main challenge addressed here is establishing a K-uniform inf-sup condition with respect to appropriately weighted Hilbert intersection- and sum-spaces.

[1]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[2]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[3]  Joachim Schöberl,et al.  A uniformly stable Fortin operator for the Taylor–Hood element , 2013, Numerische Mathematik.

[4]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[5]  Panayot S. Vassilevski,et al.  Parallel Solver for \boldsymbol{H}(div) Problems Using Hybridization and AMG , 2017 .

[6]  Douglas N. Arnold,et al.  Preconditioning in Hdiv and applications , 1997, Math. Comput..

[7]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[8]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[9]  L. Zikatanov,et al.  New stabilized discretizations for poroelasticity and the Stokes’ equations , 2017, Computer Methods in Applied Mechanics and Engineering.

[10]  Catherine Elizabeth Powell,et al.  Optimal Preconditioning for Raviart-Thomas Mixed Formulation of Second-Order Elliptic Problems , 2003, SIAM J. Matrix Anal. Appl..

[11]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[12]  Tingzhu Huang,et al.  New Block Triangular Preconditioners for Saddle Point Linear Systems with Highly Singular (1,1) Blocks , 2009 .

[13]  Panayot S. Vassilevski,et al.  Algebraic Hybridization and Static Condensation with Application to Scalable H(div) Preconditioning , 2018, SIAM J. Sci. Comput..

[14]  G. Gatica A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .

[15]  Panayot S. Vassilevski,et al.  Parallel Solver for H(div) Problems Using Hybridization and AMG , 2016 .

[16]  Panayot S. Vassilevski,et al.  Parallel Auxiliary Space AMG Solver for H(div) Problems , 2012, SIAM J. Sci. Comput..

[17]  Panayot S. Vassilevski,et al.  A Block-Diagonal Algebraic Multigrid Preconditioner for the Brinkman Problem , 2013, SIAM J. Sci. Comput..

[18]  J. Kraus,et al.  Parameter-robust stability of classical three-field formulation of Biot's consolidation model , 2017, 1706.00724.

[19]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[20]  Panayot S. Vassilevski,et al.  Interior penalty preconditioners for mixed finite element approximations of elliptic problems , 1996, Math. Comput..

[21]  Matthias Hieber,et al.  On the Equation div u = g and Bogovskii’s Operator in Sobolev Spaces of Negative Order , 2006 .

[22]  Panayot S. Vassilevski,et al.  A Mixed Formulation for the Brinkman Problem , 2014, SIAM J. Numer. Anal..

[23]  D. Schötzau,et al.  Preconditioners for saddle point linear systems with highly singular blocks. , 2006 .

[24]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[25]  Martin Costabel,et al.  On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.

[26]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[27]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[28]  R. S. Falk,et al.  PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .