Lattice rules for nonperiodic smooth integrands

The aim of this paper is to show that one can achieve convergence rates of $$N^{-\alpha + \delta }$$N−α+δ for $$\alpha > 1/2$$α>1/2 (and for $$\delta > 0$$δ>0 arbitrarily small) for nonperiodic $$\alpha $$α-smooth cosine series using lattice rules without random shifting. The smoothness of the functions can be measured by the decay rate of the cosine coefficients. For a specific choice of the parameters the cosine series space coincides with the unanchored Sobolev space of smoothness 1. We study the embeddings of various reproducing kernel Hilbert spaces and numerical integration in the cosine series function space and show that by applying the so-called tent transformation to a lattice rule one can achieve the (almost) optimal rate of convergence of the integration error. The same holds true for symmetrized lattice rules for the tensor product of the direct sum of the Korobov space and cosine series space, but with a stronger dependence on the dimension in this case.

[1]  Arthur G. Werschulz,et al.  Tractability of Multivariate Approximation over a Weighted Unanchored Sobolev Space , 2009 .

[2]  Frances Y. Kuo,et al.  On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..

[3]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[4]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[5]  Dirk Nuyens,et al.  Higher Order Quasi‐Monte Carlo Methods: A Comparison , 2010 .

[6]  Fred J. Hickernell,et al.  Weighted compound integration rules with higher order convergence for all N , 2012, Numerical Algorithms.

[7]  Fred J. Hickernell,et al.  The existence of good extensible rank-1 lattices , 2003, J. Complex..

[8]  Henryk Wozniakowski,et al.  Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.

[9]  Dirk Nuyens,et al.  Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..

[10]  Josef Dick,et al.  Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..

[11]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[12]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[13]  Josef Dick,et al.  The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets , 2006, Numerische Mathematik.

[14]  Ian H. Sloan,et al.  Component-by-component construction of good lattice rules , 2002, Math. Comput..

[15]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[16]  Ronald Cools,et al.  An imbedded family of cubature formulae for n -dimensional product regions , 1994 .

[17]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[18]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[19]  Arieh Iserles,et al.  From high oscillation to rapid approximation I: Modified Fourier expansions , 2008 .

[20]  Henryk Wozniakowski,et al.  Periodization strategy may fail in high dimensions , 2007, Numerical Algorithms.

[21]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[22]  Frances Y. Kuo,et al.  Correction to “Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond” , 2012 .

[23]  F. J. Hickernell Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .

[24]  S. K. Zaremba,et al.  La Méthode des “Bons Treillis” pour le Calcul des Intégrales Multiples , 1972 .

[25]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[26]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[27]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[28]  Josef Dick,et al.  Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..

[29]  Vladimir N. Temlyakov,et al.  Cubature formulas, discrepancy, and nonlinear approximation , 2003, J. Complex..

[30]  A. Genz,et al.  An Imbedded Family of Fully Symmetric Numerical Integration Rules , 1983 .

[31]  Henryk Wozniakowski,et al.  Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..

[32]  Josef Dick On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..

[33]  Josef Dick,et al.  The construction of good extensible rank-1 lattices , 2008, Math. Comput..

[34]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[35]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..