Performance of Refined Isogeometric Analysis in Solving Quadratic Eigenvalue Problems

Certain applications that analyze damping effects require the solution of quadratic eigenvalue problems (QEPs). We use refined isogeometric analysis (rIGA) to solve quadratic eigenproblems. rIGA discretization, while conserving desirable properties of maximum-continuity isogeometric analysis (IGA), reduces the interconnection between degrees of freedom by adding low-continuity basis functions. This connectivity reduction in rIGA’s algebraic system results in faster matrix LU factorizations when using multifrontal direct solvers. We compare computational costs of rIGA versus those of IGA when employing Krylov eigensolvers to solve quadratic eigenproblems arising in 2D vector-valued multifield problems. For large problem sizes, the eigencomputation cost is governed by the cost of LU factorization, followed by costs of several matrix–vector and vector–vector multiplications, which correspond to Krylov projections. We minimize the computational cost by introducing C0 and C1 separators at specific element interfaces for our rIGA generalizations of the curl-conforming Nédélec and divergence-conforming Raviart–Thomas finite elements. Let p be the polynomial degree of basis functions; the LU factorization is up to O ( (p − 1)2) times faster when using rIGA compared to IGA in the asymptotic regime. Thus, rIGA theoretically improves the total eigencomputation cost by O ( (p − 1)2) for sufficiently large problem sizes. Yet, in practical cases of moderate-size eigenproblems, the improvement rate deteriorates as the number of computed eigenvalues increases because of multiple matrix–vector and vector–vector operations. Our numerical tests show that rIGA accelerates the solution of quadratic eigensystems by O(p − 1) for moderately sized problems when we seek to compute a reasonable number of eigenvalues.

[1]  Eloy Romero,et al.  A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc , 2014, TOMS.

[2]  Axel Ruhe,et al.  The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .

[3]  Victor M. Calo,et al.  PetIGA: A Framework for High-Performance Isogeometric Analysis , 2013 .

[4]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[5]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[6]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[7]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[8]  V. Calo,et al.  Optimal spectral approximation of 2n-order differential operators by mixed isogeometric analysis , 2018, Computer Methods in Applied Mechanics and Engineering.

[9]  L. Demkowicz,et al.  De Rham diagram for hp finite element spaces , 2000 .

[10]  Victor M. Calo,et al.  An energy-stable generalized-α method for the Swift-Hohenberg equation , 2018, J. Comput. Appl. Math..

[11]  Alessandro Reali,et al.  On the application of curve reparameterization in isogeometric vibration analysis of free-from curved beams , 2018, Computers & Structures.

[12]  Hendrik Speleers,et al.  Isogeometric analysis for 2D and 3D curl–div problems: Spectral symbols and fast iterative solvers , 2018, Computer Methods in Applied Mechanics and Engineering.

[13]  Annalisa Buffa,et al.  Isogeometric Analysis for Electromagnetic Problems , 2010, IEEE Transactions on Magnetics.

[14]  G. W. Stewart,et al.  Addendum to "A Krylov-Schur Algorithm for Large Eigenproblems" , 2002, SIAM J. Matrix Anal. Appl..

[15]  Zhaojun Bai,et al.  Stability Analysis of the Two-level Orthogonal Arnoldi Procedure , 2016, SIAM J. Matrix Anal. Appl..

[16]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[17]  José E. Román,et al.  Strategies for spectrum slicing based on restarted Lanczos methods , 2012, Numerical Algorithms.

[18]  M. Shahriari,et al.  Error control and loss functions for the deep learning inversion of borehole resistivity measurements , 2020, International Journal for Numerical Methods in Engineering.

[19]  Victor M. Calo,et al.  Reactive n-species Cahn-Hilliard system: A thermodynamically-consistent model for reversible chemical reactions , 2019, J. Comput. Appl. Math..

[20]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[21]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[22]  Zhijia Yang,et al.  A comprehensive study of modal characteristics of a cylindrical manipulator with both link and joint flexibility , 1997 .

[23]  Ali Hashemian,et al.  Massive Database Generation for 2.5D Borehole Electromagnetic Measurements using Refined Isogeometric Analysis , 2021 .

[24]  Toshiro Matsumoto,et al.  Band structure analysis for 2D acoustic phononic structure using isogeometric boundary element method , 2020, Adv. Eng. Softw..

[25]  Ricardo G. Durán,et al.  Finite Element Analysis of a Quadratic Eigenvalue Problem Arising in Dissipative Acoustics , 2000, SIAM J. Numer. Anal..

[26]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[27]  B. Parlett,et al.  How to implement the spectral transformation , 1987 .

[28]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[29]  Alfredo Bermúdez,et al.  Modelling and numerical solution of elastoacoustic vibrations with interface damping , 1999 .

[30]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[31]  Victor M. Calo,et al.  The value of continuity: Refined isogeometric analysis and fast direct solvers , 2017 .

[32]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[33]  Quanling Deng,et al.  Isogeometric spectral approximation for elliptic differential operators , 2018, J. Comput. Sci..

[34]  Jiang Qian,et al.  A numerical method for quadratic eigenvalue problems of gyroscopic systems , 2007 .

[35]  Carmen Campos,et al.  Restarted Q-Arnoldi-type methods exploiting symmetry in quadratic eigenvalue problems , 2016 .

[36]  Chun-Hua Guo,et al.  Algorithms for hyperbolic quadratic eigenvalue problems , 2005, Math. Comput..

[37]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[38]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[39]  L. Dalcin,et al.  On the thermodynamics of the Swift–Hohenberg theory , 2016, Continuum Mechanics and Thermodynamics.

[40]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[41]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[42]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[43]  Frann Coise Tisseur Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .

[44]  J. E. Román,et al.  SIESTA‐SIPs: Massively parallel spectrum‐slicing eigensolver for an ab initio molecular dynamics package , 2018, J. Comput. Chem..

[45]  Quanling Deng,et al.  Spectral approximation properties of isogeometric analysis with variable continuity , 2017, Computer Methods in Applied Mechanics and Engineering.

[46]  Leszek Siwik,et al.  Parallel Refined Isogeometric Analysis in 3D , 2019, IEEE Transactions on Parallel and Distributed Systems.

[47]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[48]  José E. Román,et al.  Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures , 2019, J. Comput. Phys..

[49]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[50]  Lorraine G. Olson,et al.  Eigenproblems from finite element analysis of fluid-structure interactions , 2014 .

[51]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[52]  Victor M. Calo,et al.  Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes , 2016, ArXiv.

[53]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[54]  Heinrich Voss,et al.  Detecting hyperbolic and definite matrix polynomials , 2010 .

[55]  Victor M. Calo,et al.  Refined isogeometric analysis for generalized Hermitian eigenproblems , 2020, ArXiv.

[56]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[57]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[58]  Baruch Levush,et al.  Eigenmode Solution of 2-D and 3-D Electromagnetic Cavities Containing Absorbing Materials Using the Jacobi—Davidson Algorithm , 2000 .

[59]  Victor M. Calo,et al.  Refined isogeometric analysis for fluid mechanics and electromagnetics , 2019, Computer Methods in Applied Mechanics and Engineering.

[60]  Lisandro Dalcin,et al.  Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model , 2015, Journal of Fluid Mechanics.

[61]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[62]  J. E. Román,et al.  Stellarator microinstabilities and turbulence at low magnetic shear , 2018, Journal of Plasma Physics.

[63]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[64]  G. Golub,et al.  Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers , 2004 .

[65]  Victor M. Calo,et al.  PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces , 2016, J. Comput. Sci..

[66]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[67]  Victor M. Calo,et al.  The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..

[68]  Yuji Nakatsukasa,et al.  Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems , 2017, Linear Algebra and its Applications.

[69]  Comparison results for eigenvalues of curl curl operator and Stokes operator , 2018, Zeitschrift für angewandte Mathematik und Physik.

[70]  Zhaojun Bai,et al.  SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[71]  Jose E. Roman,et al.  Inertia‐based spectrum slicing for symmetric quadratic eigenvalue problems , 2020, Numer. Linear Algebra Appl..

[72]  Christophe Geuzaine,et al.  Waveguide Propagation Modes and Quadratic Eigenvalue Problems , 2006 .

[73]  Victor M. Calo,et al.  A scalable block-preconditioning strategy for divergence-conforming B-spline discretizations of the Stokes problem , 2017 .

[74]  Victor M. Calo,et al.  Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration , 2015, ICCS.

[75]  Leszek Siwik,et al.  Concurrency of three-dimensional refined isogeometric analysis , 2018, Parallel Comput..

[76]  H. Elman,et al.  Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation , 2011 .