Radical (HO•, H• and HOO•) Formation and Ionomer Degradation in Polymer Electrolyte Fuel Cells

[1]  F. Coms The Chemistry of Fuel Cell Membrane Chemical Degradation , 2008, ECS Transactions.

[2]  Y. Nosaka,et al.  Detection of OH Radicals Generated in Polymer Electrolyte Membranes of Fuel Cells , 2011 .

[3]  Lily Ghassemzadeh,et al.  Evaluating chemical degradation of proton conducting perfluorosulfonic acid ionomers in a Fenton tes , 2011 .

[4]  O. Fichet,et al.  (Semi-)Interpenetrating polymer networks as fuel cell membranes , 2011 .

[5]  Takayoshi Ishimoto,et al.  A DFT Study of Bond Dissociation Trends of Perfluorosulfonic Acid Membrane , 2011 .

[6]  Hubert A. Gasteiger,et al.  Handbook of Fuel Cells , 2010 .

[7]  Yu Zhang,et al.  Membrane degradation mitigation using zirconia as a hydrogen peroxide decomposition catalyst , 2010 .

[8]  Mallika Gummalla,et al.  Degradation of Polymer-Electrolyte Membranes in Fuel Cells II. Theoretical model , 2010 .

[9]  Y. Nosaka,et al.  Detection of OH Radicals Generated in Polymer Membranes of PEFC , 2010 .

[10]  A. Wokaun,et al.  Damage to fuel cell membranes. Reaction of HO* with an oligomer of poly(sodium styrene sulfonate) and subsequent reaction with O(2). , 2010, Physical chemistry chemical physics : PCCP.

[11]  Michihisa Koyama,et al.  Chemical Degradation Mechanism of Model Compound, CF3 ( CF2 ) 3O ( CF2 ) 2OCF2SO3H , of PFSA Polymer by Attack of Hydroxyl Radical in PEMFCs , 2010 .

[12]  Klaus Müller,et al.  Chemical Degradation of Nafion Membranes under Mimic Fuel Cell Conditions as Investigated by Solid-State NMR Spectroscopy , 2010 .

[13]  Atsuko Y. Nosaka,et al.  Detection of OH radicals as the effect of Pt particles in the membrane of polymer electrolyte fuel cells , 2010 .

[14]  Meilin Liu,et al.  The effect of platinum in a Nafion membrane on the durability of the membrane under fuel cell conditions , 2010 .

[15]  W. Koppenol,et al.  Electrode potentials of partially reduced oxygen species, from dioxygen to water. , 2010, Free radical biology & medicine.

[16]  Kyle N. Grew,et al.  Ionic Equilibrium and Transport in the Alkaline Anion Exchange Membrane , 2010 .

[17]  E. Roduner,et al.  Rapid Radical Degradation Test of Polyaromatic Fuel Cell Membranes by Electron Paramagnetic Resonance , 2010 .

[18]  Junliang Zhang,et al.  Measurement of Platinum Oxide Coverage in a Proton Exchange Membrane Fuel Cell , 2010 .

[19]  A. Wokaun,et al.  Radiation grafted fuel cell membranes based on co-grafting of α-methylstyrene and methacrylonitrile into a fluoropolymer base film , 2009 .

[20]  T. Fuller,et al.  Modeling of H2O2 formation in PEMFCs , 2009 .

[21]  Y. Nosaka,et al.  Detection of OH Radicals Formed at PEFC Electrodes by Means of a Fluorescence Probe , 2009 .

[22]  Shulamith Schlick,et al.  Visualizing chemical reactions and crossover processes in a fuel cell inserted in the ESR resonator: detection by spin trapping of oxygen radicals, nafion-derived fragments, and hydrogen and deuterium atoms. , 2009, The journal of physical chemistry. B.

[23]  Mallika Gummalla,et al.  Degradation of Polymer-Electrolyte Membranes in Fuel Cells I. Experimental , 2009 .

[24]  Akeel A. Shah,et al.  Modeling and Simulation of the Degradation of Perfluorinated Ion-Exchange Membranes in PEM Fuel Cells , 2009 .

[25]  Y. Nosaka,et al.  Spin-Trapping ESR Detection of OH Radicals Generated in the Electrode Reactions for PEFCs , 2009 .

[26]  F. Büchi,et al.  Polymer electrolyte fuel cell durability , 2009 .

[27]  F. Coms,et al.  Fragmentation of Fluorinated Model Compounds Exposed to Oxygen Radicals: Spin Trapping ESR Experiments and Implications for the Behaviour of Proton Exchange Membranes Used in Fuel Cells , 2008 .

[28]  Jeanette E. Owejan,et al.  Mitigation of Perfluorosulfonic Acid Membrane Chemical Degradation Using Cerium and Manganese Ions , 2008 .

[29]  Kazuhiko Shinohara,et al.  Membrane degradation mechanism during open-circuit voltage hold test , 2008 .

[30]  Vijay Ramani,et al.  Degradation Mitigation in Polymer Electrolyte Membranes Using Cerium Oxide as a Regenerative Free-Radical Scavenger , 2008 .

[31]  Y. Nosaka,et al.  Radical formation in polymer electrolyte fuel cell components as studied by ESR spectroscopy , 2008 .

[32]  John W. Weidner,et al.  Durability of Perfluorosulfonic Acid and Hydrocarbon Membranes: Effect of Humidity and Temperature , 2008 .

[33]  Michael Fowler,et al.  Comparison of two accelerated Nafion™ degradation experiments , 2008 .

[34]  Miguel A. Guerra,et al.  Chemical Durability Studies of Perfluorinated Sulfonic Acid Polymers and Model Compounds under Mimic Fuel Cell Conditions , 2007 .

[35]  Thomas F. Fuller,et al.  H2O2 Formation under Fuel-Cell Conditions , 2007 .

[36]  N. Cipollini,et al.  Chemical Aspects of Membrane Degradation , 2007 .

[37]  J. Anzai,et al.  Degradation Mechanism of the PFSA Membrane and Influence of Deposited Pt in the Membrane , 2007 .

[38]  Mahlon Wilson,et al.  Scientific aspects of polymer electrolyte fuel cell durability and degradation. , 2007, Chemical reviews.

[39]  T. Xie,et al.  A kinetic model for the chemical degradation of perfluorinated sulfonic acid ionomers: Weak end groups versus side chain cleavage , 2007 .

[40]  Kazuhiko Shinohara,et al.  Membrane Degradation Behavior during Open-Circuit Voltage Hold Test , 2007 .

[41]  Fang Wang,et al.  A degradation study of Nafion proton exchange membrane of PEM fuel cells , 2007 .

[42]  Yu-ran Luo,et al.  Comprehensive handbook of chemical bond energies , 2007 .

[43]  Matt Crum,et al.  Effective Testing Matrix for Studying Membrane Durability in PEM Fuel Cells: Part I. Chemical Durability , 2006 .

[44]  Hubert A. Gasteiger,et al.  Impact of Gas Partial Pressure on PEMFC Chemical Degradation , 2006 .

[45]  James M. Fenton,et al.  Effect of Catalyst Properties on Membrane Degradation Rate and the Underlying Degradation Mechanism in PEMFCs , 2006 .

[46]  Minoru Inaba,et al.  Gas crossover and membrane degradation in polymer electrolyte fuel cells , 2006 .

[47]  H. Yano,et al.  Temperature dependence of oxygen reduction activity at Nafion-coated bulk Pt and Pt/carbon black catalysts. , 2006, The journal of physical chemistry. B.

[48]  A. Laconti,et al.  Polymer Electrolyte Membrane Degradation Mechanisms in Fuel Cells - Findings Over the Past 30 Years and Comparison with Electrolyzers , 2006 .

[49]  S. Cleghorn,et al.  Effect of Relative Humidity on Membrane Durability in PEM Fuel Cells , 2006 .

[50]  Sergei F. Burlatsky,et al.  Aspects of PEMFC Degradation , 2006 .

[51]  Hubert A. Gasteiger,et al.  Factors Impacting Chemical Degradation Of Perfluorinated Sulfonic Acid Ionomers , 2006 .

[52]  James M. Fenton,et al.  Is H2O2 Involved in the Membrane Degradation Mechanism in PEMFC , 2006 .

[53]  Shohji Tsushima,et al.  Analysis of Water Transport in PEFCs by Magnetic Resonance Imaging Measurement , 2006 .

[54]  Jingrong Yu,et al.  Lifetime behavior of a PEM fuel cell with low humidification of feed stream , 2005 .

[55]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[56]  Wen Liu,et al.  In Situ Detection of Hydrogen Peroxide in PEM Fuel Cells , 2005 .

[57]  Shulamith Schlick,et al.  Membrane-derived fluorinated radicals detected by electron spin resonance in UV-irradiated Nafion and Dow ionomers: effect of counterions and H2O2. , 2005, The journal of physical chemistry. B.

[58]  M. Inaba,et al.  Effect of Agglomeration of Pt/C Catalyst on Hydrogen Peroxide Formation , 2004 .

[59]  Ulrich Pohl,et al.  Reactive Oxygen Species: Players in the Platelet Game , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[60]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[61]  M. Hein,et al.  In-situ spin trap electron paramagnetic resonance study of fuel cell processes , 2004 .

[62]  D. Curtin,et al.  Advanced materials for improved PEMFC performance and life , 2004 .

[63]  J. Baeyens,et al.  A review of classic Fenton's peroxidation as an advanced oxidation technique. , 2003, Journal of hazardous materials.

[64]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[65]  J. Mittal,et al.  A pulse radiolysis study of coumarin and its derivatives , 2002 .

[66]  V. Radmilović,et al.  Oxygen Reduction on Carbon-Supported Pt−Ni and Pt−Co Alloy Catalysts , 2002 .

[67]  Y. K. Bhardwaj,et al.  Radiation effect on poly (p-sodium styrene sulphonate) of different degrees of polymerization in aqueous solution: pulse radiolysis and steady state study , 2001 .

[68]  W. Koppenol The Haber-Weiss cycle – 70 years later , 2001, Redox report : communications in free radical research.

[69]  S. Holdcroft,et al.  Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonated α,β,β-trifluorostyrene (BAM®) and sulfonated styrene-(ethylene-butylene)-styrene triblock (DAIS-analytical) copolymers , 2001 .

[70]  Hubert A. Gasteiger,et al.  Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study , 2001 .

[71]  A. Haug,et al.  Oxygen Diffusion Coefficient and Solubility in a New Proton Exchange Membrane , 2000 .

[72]  E. Roduner,et al.  EPR investigation of HO/ radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes , 1999 .

[73]  Günther G. Scherer,et al.  Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells , 1995 .

[74]  J. Lind,et al.  One- and two-electron reduction potentials of peroxyl radicals and related species , 1994 .

[75]  W. Koppenol The centennial of the Fenton reaction. , 1993, Free radical biology & medicine.

[76]  Mark W. Verbrugge,et al.  A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell , 1992 .

[77]  D. Wink,et al.  A kinetic investigation of intermediates formed during the Fenton reagent mediated degradation of N-nitrosodimethylamine: evidence for an oxidative pathway not involving hydroxyl radical. , 1991, Chemical research in toxicology.

[78]  W. Koppenol Oxyradical reactions: from bond‐dissociation energies to reduction potentials , 1990, FEBS letters.

[79]  D. T. Sawyer Reevaluation of the bond-dissociation energies (.DELTA.HDBE) for H-OH, H-OOH, H-OO-, H-O., H-OO-, and H-OO. , 1989 .

[80]  Nicholas P. Cheremisinoff,et al.  Handbook of polymer science and technology , 1989 .

[81]  G. Buxton,et al.  Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution , 1988 .

[82]  A. Quintanilha,et al.  Reactive Oxygen Species in Chemistry, Biology, and Medicine , 1988, Springer US.

[83]  J. Rush,et al.  Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2- with iron(II)/iron(III) ions. The reactivity of HO2/O2- with ferric ions and its implication on the occurrence of the Haber-Weiss reaction , 1985 .

[84]  A. Bard,et al.  Standard Potentials in Aqueous Solution , 1985 .

[85]  B. Bielski REEVALUATION OF THE SPECTRAL AND KINETIC PROPERTIES OF HO2 AND O2‐ FREE RADICALS , 1978 .

[86]  W. Koppenol,et al.  THE HABER‐WEISS CYCLE , 1978 .

[87]  Cheves Walling,et al.  Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates , 1973 .

[88]  B. Parsons,et al.  Oxidation of ferrous ions by perhydroxyl radicals , 1972 .

[89]  P. Wardman,et al.  Heats of ionization of HO2 and OH in aqueous solution , 1971 .

[90]  R. B. Hodgdon Polyelectrolytes prepared from perfluoroalkylaryl macromolecules , 1968 .

[91]  J. Hoare,et al.  The electrochemistry of oxygen , 1968 .

[92]  T. J. Hardwick THE RATE CONSTANT OF THE REACTION BETWEEN FERROUS IONS AND HYDROGEN PEROXIDE IN ACID SOLUTION , 1957 .

[93]  H. Gerischer,et al.  Über die katalytische Zersetzung von Wasserstoffsuperoxyd an metallischem Platin. , 1956 .

[94]  W. Taylor,et al.  The Rate Constant of the Reaction between Hydrogen Peroxide and Ferrous Ions , 1953 .