Optimal trajectory planning for trains – A pseudospectral method and a mixed integer linear programming approach

[1]  Bart De Schutter,et al.  Optimal trajectory planning for trains using mixed integer linear programming , 2011, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[2]  Thomas Schank,et al.  A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus , 2011 .

[3]  Victor M. Becerra,et al.  Solving complex optimal control problems at no cost with PSOPT , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[4]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[5]  Jun-ichi Imura,et al.  Lebesgue piecewise affine approximation of nonlinear systems , 2010 .

[6]  Johanna Törnquist Krasemann Design of an Effective Algorithm for Fast Response to the Rescheduling of Railway Traffic During Disturbances , 2012 .

[7]  Qi Gong,et al.  PSEUDOSPECTRAL OPTIMAL CONTROL ON ARBITRARY GRIDS , 2009 .

[8]  Olle Sundström,et al.  A generic dynamic programming Matlab function , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[9]  Mato Baotic,et al.  Optimal rail route energy management under constraints and fixed arrival time , 2009, 2009 European Control Conference (ECC).

[10]  Victor M. Becerra,et al.  PSOPT Optimal Control Solver User Manual , 2009 .

[11]  Dario Pacciarelli,et al.  Evaluation of green wave policy in real-time railway traffic management , 2009 .

[12]  Qi Gong,et al.  Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..

[13]  Rajeev Thottappillil,et al.  An overview of electromagnetic compatibility challenges in European Rail Traffic Management System , 2008 .

[14]  Dario Pacciarelli,et al.  Assessment of flexible timetables in real-time traffic management of a railway bottleneck , 2008 .

[15]  Qi Gong,et al.  Pseudospectral Optimal Control for Military and Industrial Applications , 2007, 2007 46th IEEE Conference on Decision and Control.

[16]  Andrea D'Ariano,et al.  Conflict Resolution and Train Speed Coordination for Solving Real-Time Timetable Perturbations , 2007, IEEE Transactions on Intelligent Transportation Systems.

[17]  Andrea D'Ariano,et al.  Running Time Re-Optimization during Real-Time Timetable Perturbations , 2006 .

[18]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[19]  Martin W. P. Savelsbergh,et al.  Integer-Programming Software Systems , 2005, Ann. Oper. Res..

[20]  Jeff Linderoth,et al.  Noncommercial Software for Mixed-Integer Linear Programming , 2005 .

[21]  Masafumi Miyatake,et al.  Application of dynamic programming to the optimization of the running profile of a train , 2004 .

[22]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .

[23]  Rongfang Rachel Liu,et al.  Energy-efficient operation of rail vehicles , 2003 .

[24]  Gang Tao,et al.  Adaptive Control Design and Analysis , 2003 .

[25]  I. Michael Ross,et al.  Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .

[26]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[27]  Rudiger Franke,et al.  Optimal control of the driving of trains , 2002 .

[28]  Peter Terwiesch,et al.  Optimal Control of the Driving of Trains (Optimale Steuerung der Fahrweise von Zügen) , 2002 .

[29]  P Gerber Class Re 465 locomotives for heavy-haul freight service , 2001 .

[30]  M. Meyer,et al.  An algorithm for the optimal control of the driving of trains , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[31]  Phil Howlett,et al.  The Optimal Control of a Train , 2000, Ann. Oper. Res..

[32]  Eugene Khmelnitsky,et al.  On an optimal control problem of train operation , 2000, IEEE Trans. Autom. Control..

[33]  Felix Schmid,et al.  A review of methods to measure and calculate train resistances , 2000 .

[34]  C. S. Chang,et al.  Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system , 2000 .

[35]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[36]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[37]  R. Kanwal Generalized Functions: Theory and Technique , 1998 .

[38]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[39]  Eduardo F. Camacho,et al.  Model predictive control in the process industry , 1995 .

[40]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[41]  B. Fornberg,et al.  A review of pseudospectral methods for solving partial differential equations , 1994, Acta Numerica.

[42]  P. Howlett An optimal strategy for the control of a train , 1990, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[43]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[44]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[45]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[46]  M. J. Maher,et al.  Model Building in Mathematical Programming , 1978 .

[47]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[48]  K. Ichikawa Application of Optimization Theory for Bounded State Variable Problems to the Operation of Train , 1968 .

[49]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .