A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions

[1]  Jinhee Lee,et al.  Identification of multiple cracks in a beam using vibration amplitudes , 2009 .

[2]  Jinhee Lee IDENTIFICATION OF MULTIPLE CRACKS IN A BEAM USING NATURAL FREQUENCIES , 2009 .

[3]  Ajith Abraham,et al.  A New Approach for Solving Nonlinear Equations Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[4]  Bing Li,et al.  Identification of a crack in a beam based on the finite element method of a B-spline wavelet on the interval , 2006 .

[5]  José Fernández-Sáez,et al.  Natural frequencies for bending vibrations of Timoshenko cracked beams , 2006 .

[6]  Lawrence A. Bergman,et al.  Vibration of damaged beams under a moving mass: theory and experimental validation , 2004 .

[7]  D. Y. Zheng,et al.  Free vibration analysis of a cracked beam by finite element method , 2004 .

[8]  Cecilia Surace,et al.  Natural frequencies of a bar with multiple cracks , 2004 .

[9]  D. Y. Zheng,et al.  Vibration and stability of cracked hollow-sectional beams , 2003 .

[10]  S. Naguleswaran,et al.  Vibration and stability of an Euler–Bernoulli beam with up to three-step changes in cross-section and in axial force , 2003 .

[11]  S. P. Lele,et al.  Modelling of Transverse Vibration of Short Beams for Crack Detection and Measurement of Crack Extension , 2002 .

[12]  J. Fernández-Sáez,et al.  FUNDAMENTAL FREQUENCY OF CRACKED BEAMS IN BENDING VIBRATIONS: AN ANALYTICAL APPROACH , 2002 .

[13]  R. Whalley,et al.  Vibration analysis of distributed-lumped rotor systems , 2000 .

[14]  C. Navarro,et al.  APPROXIMATE CALCULATION OF THE FUNDAMENTAL FREQUENCY FOR BENDING VIBRATIONS OF CRACKED BEAMS , 1999 .

[15]  I. Takahashi Vibration and stability of non-uniform cracked Timoshenko beam subjected to follower force , 1999 .

[16]  Romualdo Ruotolo,et al.  NATURAL FREQUENCIES OF A BEAM WITH AN ARBITRARY NUMBER OF CRACKS , 1999 .

[17]  Cecilia Surace,et al.  DAMAGE ASSESSMENT OF MULTIPLE CRACKED BEAMS: NUMERICAL RESULTS AND EXPERIMENTAL VALIDATION , 1997 .

[18]  C. Ratcliffe DAMAGE DETECTION USING A MODIFIED LAPLACIAN OPERATOR ON MODE SHAPE DATA , 1997 .

[19]  B. P. Nandwana,et al.  DETECTION OF THE LOCATION AND SIZE OF A CRACK IN STEPPED CANTILEVER BEAMS BASED ON MEASUREMENTS OF NATURAL FREQUENCIES , 1997 .

[20]  Andrew D. Dimarogonas,et al.  Vibration of cracked structures: A state of the art review , 1996 .

[21]  Y. Narkis,et al.  Crack identification in a cantilever beam under uncertain end conditions , 1996 .

[22]  J. Dennis,et al.  Sizing and least-change secant methods , 1993 .

[23]  Antonino Morassi,et al.  Crack‐Induced Changes in Eigenparameters of Beam Structures , 1993 .

[24]  R. Gasch,et al.  A Survey Of The Dynamic Behaviour Of A Simple Rotating Shaft With A Transverse Crack , 1993 .

[25]  Nikos A. Aspragathos,et al.  Identification of crack location and magnitude in a cantilever beam from the vibration modes , 1990 .

[26]  C. Pierre,et al.  Natural modes of Bernoulli-Euler beams with symmetric cracks , 1990 .

[27]  C. W. Bert,et al.  Free vibration of stepped beams: Higher mode frequencies and effects of steps on frequency , 1989 .

[28]  W. H. Liu,et al.  Vibrations of a constrained beam carrying a heavy tip body , 1988 .

[29]  Andrew D. Dimarogonas,et al.  Coupled longitudinal and bending vibrations of a rotating shaft with an open crack , 1987 .

[30]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[31]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[32]  Robert Y. Liang,et al.  Detection of cracks in beam structures using measurements of natural frequencies , 1991 .