Chemical-kinetic parameters of hyperbolic Earth entry

Chemical-kinetic parameters governing the flow in the shock layer over a heat shield of a blunt body entering Earth's atmosphere from a hyperbolic orbit are derived. By the use of the assumption that the heat shield is made of carbon phenolic and by allowing for an arbitrary rate of pyrolysis-gas injection, chemical reactions occurring in the shock layer are postulated, and the collision integrals governing the transport properties, the rate coefficients of the reactions, and the parameters needed for the bifurcation model and for the finite-rate kinetic wall boundary conditions are determined using the best available techniques

[1]  Chul-ya Park Measurement of ionic recombination rate of nitrogen. , 1968 .

[2]  E. Levin,et al.  Resonance charge transfer, transport cross sections, and collision integrals for N(+)(3P)-N(4S0) and O(+)(4S0)-O(3P) interactions , 1991 .

[3]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[4]  R. Nesbet,et al.  Low-energy electron scattering by atomic nitrogen , 1975 .

[5]  M. Dunn Measurement of C/plus/ plus e/minus/ plus e/minus/ and CO/plus/ plus e/minus/ recombination in carbon monoxide flows , 1971 .

[6]  E. Levin,et al.  Transport cross sections and collision integrals for N(4So)-O+ (4So) and N+ (3P)-O(3P) interactions , 1991 .

[7]  John D. Ramshaw,et al.  Ambipolar diffusion in two-temperature multicomponent plasmas , 1993 .

[8]  J. F. Williams Electron scattering from hydrogen atoms. II. Elastic scattering at low energies from 0.5 to 8.7 eV , 1975 .

[9]  Joseph G. Hirschberg,et al.  Electron-Ion Recombination in Dense Plasmas , 1962 .

[10]  G. Candler,et al.  Thermal rate constants of the O2+N→NO+O reaction based on the A2′ and A4′ potential-energy surfaces , 1997 .

[11]  C. Bauschlicher,et al.  Theoretical study of hydrogen and nitrogen interactions - N-H transport cross sections and collision integrals , 1992 .

[12]  E. Levin,et al.  Collision integrals and high temperature transport properties for N-N, O-O, and N-O , 1990 .

[13]  Eugene Levin,et al.  HH2 collision integrals and transport coefficients , 1996 .

[14]  R. Nesbet,et al.  Low - energy electron scattering by atomic oxygen , 1975 .

[15]  Kenneth R. Hall,et al.  Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases , 1985 .

[16]  Graham V. Candler,et al.  Thermal rate constants of the N 2 +O→NO+N reaction using ab initio 3 A″ and 3 A' potential energy surfaces , 1996 .

[17]  E. Levin,et al.  H–N2 interaction energies, transport cross sections, and collision integrals , 1992 .

[18]  Chul Park Interaction of Spalled Particles with Shock Layer Flow , 1999 .

[19]  R. Nesbet,et al.  Low-energy electron scattering by atomic carbon , 1975 .

[20]  George Liu High Temperature Oxidation of Graphite by a Dissociated Oxygen Beam , 1973 .

[21]  D. M. Cooper,et al.  An experimental determination of the cross section of the Swings band system of C3 , 1979 .

[22]  Chul Park,et al.  STAGNATION-POINT HEAT TRANSFER RATES FOR PIONEER-VENUS PROBES , 1999 .