Modeling environmental effects on charge density distributions in polar organometallics: Validation of embedded cluster models for the methyl lithium crystal

The charge density and its Laplacian at the LiC and CH bond critical points and other features of the electron density distribution of the methyl lithium crystal have been compared by density functional methods for (i) the isolated (LiCH3)4 tetramer or larger clusters, (ii) for quantum mechanically treated clusters in polarizable continuum model (PCM) surroundings, (iii) for clusters augmented by the periodic electrostatic embedded cluster model (PEECM), and for (iv) the periodic crystal. Comparisons with identical functional and basis sets indicate that both PCM and PEECM embedding of only a tetramer did not fully account for the environmental effect. In contrast, embedding of a full unit cell gave results that were essentially converged to the periodic crystal data. Effects of basis set and exchange correlation functional on the QTAIM bond descriptors are of a comparable order of magnitude as the crystal environmental effects. In this context, embedded cluster computations provide distinct advantages over explicit solid‐state calculations with respect to their freedom of the choice of computational and theoretical level. This is demonstrated by embedded MP2 calculations. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010

[1]  Hermann Stoll,et al.  A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds , 1982 .

[2]  Alfredsson,et al.  Influence of intermolecular interactions on multipole-refined electron densities. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[3]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[4]  M. Reiher,et al.  Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory. , 2008, The Journal of chemical physics.

[5]  C. Gatti,et al.  Experimental vs. theoretical topological properties of charge density distributions. An application to the l-alanine molecule studied by X-ray diffraction at 23 K , 1992 .

[6]  Gustavo E. Scuseria,et al.  A fast multipole method for periodic systems with arbitrary unit cell geometries , 1998 .

[7]  Gustavo E Scuseria,et al.  Revisiting infinite lattice sums with the periodic fast multipole method. , 2004, The Journal of chemical physics.

[8]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[9]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[10]  Christof Hättig,et al.  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation , 2000 .

[11]  Peter Luger,et al.  Fast electron density methods in the life sciences--a routine application in the future? , 2007, Organic & biomolecular chemistry.

[12]  Á. M. Pendás,et al.  Ions in crystals: The topology of the electron density in ionic materials.II. The cubic alkali halide perovskites , 1997 .

[13]  Jacopo Tomasi,et al.  Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix‐inversion procedures and the renormalization of the apparent charges , 1995, J. Comput. Chem..

[14]  B. Paulus,et al.  On the application of the incremental scheme to ionic solids: test of different embeddings , 2005 .

[15]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[16]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[17]  Gatti,et al.  On the origin of topological differences between experimental and theoretical crystal charge densities , 2000, Acta crystallographica. Section A, Foundations of crystallography.

[18]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[19]  Zobel,et al.  Accurate experimental electronic properties of dl-proline monohydrate obtained within 1 Day , 1998, Science.

[20]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[21]  Dennis R. Salahub,et al.  Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation , 1992 .

[22]  Á. M. Pendás,et al.  Ions in crystals: The topology of the electron density in ionic materials. I. Fundamentals , 1997 .

[23]  B. Engels,et al.  On the Accuracy of Theoretically and Experimentally Determined Electron Densities of Polar Bonds , 2004 .

[24]  A. Warshel,et al.  Frozen density functional approach for ab initio calculations of solvated molecules , 1993 .

[25]  P. Coppens,et al.  The interplay between experiment and theory in charge-density analysis. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[26]  R. Orlando,et al.  Ab Initio Quantum Simulation in Solid State Chemistry , 2005 .

[27]  Samuel Fux,et al.  Analysis of electron density distributions from subsystem density functional theory applied to coordination bonds , 2008 .

[28]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[29]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[30]  M. Carducci,et al.  Experimental Charge Densities and Intermolecular Interactions: Electrostatic and Topological Analysis of DL-Histidine , 1999 .

[31]  R Dovesi,et al.  Local-MP2 electron correlation method for nonconducting crystals. , 2005, The Journal of chemical physics.

[32]  E. Weiss,et al.  Über Metallalkyl‐ und ‐aryl‐Verbindungen, 40 Strukturverfeinerung von Methyllithium durch Neutronenbeugung von (LiCD3)4 bei 1.5 und 290 K , 1990 .

[33]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[34]  Alessandro Laio,et al.  A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations , 2002 .

[35]  J. Zuo,et al.  Topological analysis of electrostatic potential in SrTiO3 , 2001 .

[36]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[37]  R. Ahlrichs,et al.  Performance of parallel TURBOMOLE for density functional calculations , 1998, J. Comput. Chem..

[38]  V. Saunders,et al.  Crystal field effects on the topological properties of the electron density in molecular crystals: The case of urea , 1994 .

[39]  V. Tsirelson,et al.  Electron density and atomic displacements in KTaO3. , 2000, Acta crystallographica. Section B, Structural science.

[40]  Joachim Sauer,et al.  Point defects in CaF2 and CeO2 investigated by the periodic electrostatic embedded cluster method. , 2009, The Journal of chemical physics.

[41]  D. Jayatilaka,et al.  Wavefunctions derived from experiment. IV. Investigation of the crystal environment of ammonia. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[42]  C. Gatti,et al.  Chemical insight into electron density and wave functions: software developments and applications to crystals, molecular complexes and materials science , 2007 .

[43]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[44]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[45]  Michael L. McKee,et al.  Density Functional Calculations of Methyllithium, t-Butyllithium, and Phenyllithium Oligomers: Effect of Hyperconjugation on Conformation , 2001 .

[46]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[47]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[48]  F. Weigend,et al.  Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr , 2003 .

[49]  M. Hursthouse,et al.  Experimental and theoretical determination of electronic properties in l-dopa , 1995 .

[50]  P. Luger,et al.  TOPOLOGICAL ANALYSIS OF THE EXPERIMENTAL ELECTRON DENSITIES OF AMINO ACIDS. 1. D, L-ASPARTIC ACID AT 20 K , 1998 .

[51]  C. Gatti Chemical bonding in crystals: new directions , 2005 .

[52]  Michael D. Towler A n introductory guide to Gaussian basis sets in solid-state electronic structure calculations † , 2000 .

[53]  Johannes Neugebauer,et al.  The merits of the frozen-density embedding scheme to model solvatochromic shifts. , 2005, The Journal of chemical physics.