C-H bond activation during and after the reactions of a metallacyclic amide with silanes: formation of a μ-alkylidene hydride complex, its H-D exchange, and β-H abstraction by a hydride ligand.

Metallacyclic complex [(Me2N)3Ta(η(2)-CH2SiMe2NSiMe3)] (3) undergoes C-H activation in its reaction with H3SiPh to afford a Ta/μ-alkylidene/hydride complex, [(Me2N)2{(Me3Si)2N}Ta(μ-H)2(μ-C-η(2)-CHSiMe2NSiMe3)Ta(NMe2)2] (4). Deuterium-labeling studies with [D3]SiPh show H-D exchange between the Ta-D-Ta unit and all methyl groups in [(Me2N)2{(Me3Si)2N}Ta(μ-D)2(μ-C-η(2)-CHSiMe2NSiMe3)Ta(NMe2)2] ([D2]-4) to give the partially deuterated complex [Dn]-4. In addition, 4 undergoes β-H abstraction between a hydride and an NMe2 ligand and forms a new complex [(Me2N){(Me3 Si)2N}Ta(μ-H)(μ-N-η(2)-C,N-CH2NMe)(μ-C-η(2)-C,N-CHSiMe2NSiMe3)Ta(NMe2)2] (5) with a cyclometalated, η(2)-imine ligand. These results indicate that there are two simultaneous processes in [Dn]-4:1) H-D exchange through σ-bond metathesis, and 2) H-D elimination through β-H abstraction (to give [Dn]-5). Both 4 and 5 have been characterized by single-crystal X-ray diffraction studies.

[1]  Ying Yin Lau,et al.  Phosphoramidate tantalum complexes for room-temperature C-H functionalization: hydroaminoalkylation catalysis. , 2013, Angewandte Chemie.

[2]  L. Schafer,et al.  TaMe3Cl2-catalyzed intermolecular hydroaminoalkylation: a simple complex for enhanced reactivity and expanded substrate scope. , 2013, Chemistry.

[3]  P. Arnold,et al.  Uranium(IV) amido-borohydrides as highly active diene polymerisation catalysts. , 2013, Dalton transactions.

[4]  C. Bruneau,et al.  A straightforward access to guaiazulene derivatives using palladium-catalysed sp2 or sp3 C-H bond functionalisation. , 2013, Chemical communications.

[5]  L. Que,et al.  The mechanism of stereospecific C-H oxidation by Fe(Pytacn) complexes: bioinspired non-heme iron catalysts containing cis-labile exchangeable sites. , 2013, Chemistry.

[6]  Shane W. Krska,et al.  High-throughput optimization of Ir-catalyzed C-H borylation: a tutorial for practical applications. , 2013, Journal of the American Chemical Society.

[7]  T. Betley,et al.  Complex N-Heterocycle Synthesis via Iron-Catalyzed, Direct C–H Bond Amination , 2013, Science.

[8]  L. Lavis,et al.  Rhodium(III)-Catalyzed Indazole Synthesis by C–H Bond Functionalization and Cyclative Capture , 2013, Journal of the American Chemical Society.

[9]  A. Sadow,et al.  C-H bond activation of ethylene by a zirconacycle. , 2013, Chemical communications.

[10]  W. Saak,et al.  Titanium-catalyzed intermolecular hydroaminoalkylation of conjugated dienes. , 2013, Chemistry.

[11]  Jaika Dörfler,et al.  Aminopyridinato‐Titan‐Katalysatoren für die Hydroaminoalkylierung von Alkenen und Styrolen , 2013 .

[12]  J. Dörfler,et al.  Aminopyridinato titanium catalysts for the hydroaminoalkylation of alkenes and styrenes. , 2013, Angewandte Chemie.

[13]  Cody R. Freitag,et al.  Variable pathways for oxygen atom insertion into metal-carbon bonds: the case of Cp*W(O)2(CH2SiMe3). , 2013, Journal of the American Chemical Society.

[14]  N. Bhuvanesh,et al.  Frustrated Lewis pair-like splitting of aromatic C–H bonds and abstraction of halogen atoms by a cationic [(FPNP)Pt]+ species , 2013 .

[15]  M. White C–H Bond Functionalization & Synthesis in the 21st Century: A Brief History and Prospectus , 2012, Synlett.

[16]  J. Berry,et al.  Introducing a mixed-valent dirhodium(II,III) catalyst with increased stability in C-H amination. , 2012, Chemical communications.

[17]  T. H. Warren,et al.  Copper-Catalyzed sp3 C–H Amination , 2012 .

[18]  D. Mindiola,et al.  Methane: a new frontier in organometallic chemistry , 2012 .

[19]  L. Schafer,et al.  Tantallaaziridines: from synthesis to catalytic applications. , 2012, Dalton transactions.

[20]  M. Pink,et al.  Silver(I)-Catalyzed Insertion of Carbene into Alkane C–H Bonds and the Origin of the Special Challenge of Methane Activation Using DFT as a Mechanistic Probe , 2012 .

[21]  C. Bruneau,et al.  Ruthenium(II)-catalyzed C-H bond activation and functionalization. , 2012, Chemical reviews.

[22]  S. Nolan,et al.  N-heterocyclic carbene gold(I) and copper(I) complexes in C-H bond activation. , 2012, Accounts of chemical research.

[23]  Jesse W. Tye,et al.  sp2 C-H activation of dimethyl fumarate by a [(Cp*Co)2-μ-(η4 : η4-toluene)] complex. , 2012, Dalton transactions.

[24]  A. Ellern,et al.  Nonclassical β-hydrogen elimination of hydrosilazido zirconium compounds via direct hydrogen transfer. , 2012, Journal of the American Chemical Society.

[25]  Ming‐Shiuan Yu,et al.  The regioselective switch for amino-NHC mediated C-H activation of benzimidazole via Ni-Al synergistic catalysis. , 2012, Organic letters.

[26]  G. Ball,et al.  Observation of a tungsten alkane σ-complex showing selective binding of methyl groups using FTIR and NMR spectroscopies. , 2012, Journal of the American Chemical Society.

[27]  E. Clot,et al.  Site selectivity and reversibility in the reactions of titanium hydrazides with Si-H, Si-X, C-X and H+ reagents: Ti=N(α) 1,2-silane addition, Nβ alkylation, Nα protonation and σ-bond metathesis. , 2012, Dalton transactions.

[28]  A. Reznichenko,et al.  The mechanism of hydroaminoalkylation catalyzed by group 5 metal binaphtholate complexes. , 2012, Journal of the American Chemical Society.

[29]  K. Nomura (Imido)vanadium(V)-alkyl, Alkylidene Complexes Exhibiting Unique Reactivities towards Olefins, Phenols, and Benzene via 1,2-C-H Bond Activation , 2012 .

[30]  E. Ison,et al.  C–H Bond Functionalization of Benzoic Acid: Catalytic Synthesis of 2-Hydroxy-6H-benzo[c]chromen-6-ones Using (Cp*IrCl2)2 , 2011 .

[31]  Z. Xue,et al.  Unexpected formation of a trinuclear complex containing a Ta(IV)-Ta(IV) bond in the reactions of Bu(t)N=Ta(NMe2)3 with silanes. , 2011, Chemical communications.

[32]  Thomas N. Müller,et al.  Der Mechanismus der titankatalysierten Hydroaminoalkylierung von Alkenen , 2011 .

[33]  T. Müller,et al.  The mechanism of the titanium-catalyzed hydroaminoalkylation of alkenes. , 2011, Angewandte Chemie.

[34]  W. Goddard,et al.  An unusual hydrogen migration/C-H activation reaction with group 3 metals. , 2011, Journal of the American Chemical Society.

[35]  Chang-Liang Sun,et al.  Direct C-H transformation via iron catalysis. , 2011, Chemical reviews.

[36]  Haibin Song,et al.  Synthesis and catalytic activity of group 5 metal amides with chiral biaryldiamine-based ligands. , 2011, Dalton transactions.

[37]  J. Y. Corey Reactions of hydrosilanes with transition metal complexes and characterization of the products. , 2011, Chemical reviews.

[38]  T. Emge,et al.  Group 5 Metal Binaphtholate Complexes for Catalytic Asymmetric Hydroaminoalkylation and Hydroamination/Cyclization , 2011 .

[39]  Haibin Song,et al.  Highly enantioselective hydroaminoalkylation of secondary amines catalyzed by group 5 metal amides with chiral biarylamidate ligands. , 2010, Chemical communications.

[40]  C. Yeung,et al.  Pd-catalyzed ortho-arylation of phenylacetamides, benzamides, and anilides with simple arenes using sodium persulfate , 2010 .

[41]  P. Eisenberger,et al.  Catalytic synthesis of amines and N-containing heterocycles: Amidate complexes for selective C–N and C–C bond-forming reactions , 2010 .

[42]  L. Vendier,et al.  Imido−Titanium/Molybdenum Heterobimetallic Systems. Switching from η6-Arene to Fischer-Type Aminocarbene Complexes by Tuning Reactivity Conditions , 2010 .

[43]  James W. White,et al.  Chapter 9. Transition-metal silyl derivatives , 2010 .

[44]  P. Eisenberger,et al.  Tantalum-amidate complexes for the hydroaminoalkylation of secondary amines: enhanced substrate scope and enantioselective chiral amine synthesis. , 2009, Angewandte Chemie.

[45]  Z. Xue,et al.  Preparation and use of Ta(CD2Bu(t))5 to probe the formation of (Bu(t)CD2)3Ta=CDBu(t). Kinetic and mechanistic studies of the conversion of pentaneopentyltantalum to the archetypical alkylidene complex. , 2009, Journal of the American Chemical Society.

[46]  F. Maseras,et al.  Agostic interactions in alkyl derivatives of sterically hindered tris(pyrazolyl)borate complexes of niobium , 2009 .

[47]  P. T. Wolczanski Structure and reactivity studies of transition metals ligated by tBuSi3X (X = O, NH, N, S, and CC). , 2009, Chemical communications.

[48]  Sven Doye,et al.  Titankatalysierte Hydroaminoalkylierung von Alkenen durch C‐H‐Aktivierung an sp3‐Zentren in der α‐Position zum Stickstoffatom , 2009 .

[49]  S. Doye,et al.  Titanium-catalyzed hydroaminoalkylation of alkenes by C-H bond activation at sp3 centers in the alpha-position to a nitrogen atom. , 2009, Angewandte Chemie.

[50]  J. Hartwig,et al.  Hydroaminoalkylation of unactivated olefins with dialkylamines. , 2008, Journal of the American Chemical Society.

[51]  P. Chirik,et al.  1,2-addition versus σ-bond metathesis reactions in transient bis(cyclopentadienyl)zirconium imides: Evidence for a d0 dihydrogen complex , 2008 .

[52]  A. N. Vedernikov Recent Advances in the Platinum-mediated CH Bond Functionalization , 2007 .

[53]  Zhenyang Lin,et al.  Current understanding of the σ-bond metathesis reactions of LnMR + R′–H → LnMR′ + R–H , 2007 .

[54]  T. Marks,et al.  Organosilane Effects on Organotitanium-Catalyzed Styrene Polymerization , 2007 .

[55]  J. Hartwig,et al.  Direct, catalytic hydroaminoalkylation of unactivated olefins with N-alkyl arylamines. , 2007, Journal of the American Chemical Society.

[56]  R. Schrock,et al.  Recent advances in the chemistry of d0 alkylidene and metallacyclobutane complexes , 2007 .

[57]  M. D. Fryzuk,et al.  Substituent effects in the hydrosilylation of coordinated dinitrogen in a ditantalum complex: cleavage and functionalization of N2. , 2006, Journal of the American Chemical Society.

[58]  N. Chatani,et al.  A catalytic approach for the functionalization of C(sp3)-H bonds. , 2006, Angewandte Chemie.

[59]  Naoto Chatani,et al.  Ein katalytischer Ansatz zur Funktionalisierung von C(sp3)‐H‐Bindungen , 2006 .

[60]  S. Lippard Hydroxylation of C–H bonds at carboxylate-bridged diiron centres , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  R. Crabtree Organometallic alkane CH activation , 2004 .

[62]  J. Gordon,et al.  Lanthanide alkylidene and imido complexes. , 2004, Dalton transactions.

[63]  Joshua S. Figueroa,et al.  Small-Molecule Activation by Molybdaziridine Hydride Complexes: Mechanistic Sequence of the Small-Molecule Binding and Molybdaziridine Ring-Opening Steps , 2004 .

[64]  Z. Xue,et al.  Transition-Metal Silyl Complexes and Chemistry in the Reactions of Silanes with Transition-Metal Complexes , 2004 .

[65]  B. Wayland,et al.  Hydrocarbon C-H bond activation by rhodium porphyrins , 2004 .

[66]  D. Vidović,et al.  Syntheses and Structures of Molybdenum(IV) Complexes with 3,5-Dimethyl- and 3,5-Di-tert-butylpyrazolato Ligands. Variable Coordination Modes and C-H Bond Activation , 2003 .

[67]  X. You,et al.  Synthesis and characterization of tantalum(V) metallaheterocycle (Me2N)3 and chloro-mixed-amide (Me2N)3Ta(Cl)[N(SiMe3)2] , 2003 .

[68]  Tsukasa Matsuo,et al.  Aryl-oxygen bond cleavage by a trihydride-bridging ditantalum complex. , 2003, Journal of the American Chemical Society.

[69]  R. Schrock,et al.  Molybdän‐ und Wolframimidoalkylidenkomplexe als effiziente Olefinmetathesekatalysatoren , 2003 .

[70]  Jan M. L. Martin,et al.  Aromatic vs aliphatic C-H bond activation by rhodium(I) as a function of agostic interactions: catalytic H/D exchange between olefins and methanol or water. , 2003, Journal of the American Chemical Society.

[71]  Ryan D. Sweeder,et al.  C-H activation of ethers and alkanes by germylene-aryl halide complexes. , 2003, Journal of the American Chemical Society.

[72]  A. Sadow,et al.  Cationic hafnium silyl complexes and their enhanced reactivity in sigma-bond metathesis processes with Si-H and C-H bonds. , 2003, Journal of the American Chemical Society.

[73]  H. Davies,et al.  Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion. , 2003, Chemical reviews.

[74]  K. Tan,et al.  Application of physical organic methods to the investigation of organometallic reaction mechanisms. , 2003, The Journal of organic chemistry.

[75]  B. Donnadieu,et al.  C-H activation of the trimethylsilyl-substituted cyclopentadienyl ligand in the cation-like complex [Cp '2ZrMe][Me(B(C6F5)3] (Cp ' = η5-C5H2-1,2,4-(SiMe3)3) , 2003 .

[76]  J. Bonanno,et al.  Amide derivatives of tantalum and a niobium-promoted ring opening of 3,5-lutidine , 2003 .

[77]  W. Jones Isotope effects in C-H bond activation reactions by transition metals. , 2003, Accounts of chemical research.

[78]  J. Jensen,et al.  A planar tetracoordinate carbon and unusual bonding in an organodimetallic propynylidene complex arising from double C-H activation of an allene ligand. , 2003, Journal of the American Chemical Society.

[79]  C. Lau,et al.  C-H bond activation by a hydrotris(pyrazolyl)borato ruthenium hydride complex , 2003 .

[80]  P. Legzdins,et al.  Thermal activation of hydrocarbon C-H bonds by Cp*M(NO) complexes of molybdenum and tungsten. , 2003, Accounts of chemical research.

[81]  C. Slugovc,et al.  C–H bond activation reactions by TpMe2Ir(III) centres. Generation of Fischer-type carbenes and development of a catalytic system for H/D exchange , 2003 .

[82]  D. Milstein Challenging metal-based transformations. From single-bond activation to catalysis and metallaquinonoids , 2003 .

[83]  A. Sadow,et al.  Activation of Arene C−H Bonds by a Cationic Hafnium Silyl Complex Possessing an α-Agostic Si−H Interaction , 2002 .

[84]  J. Bercaw,et al.  Understanding and exploiting C–H bond activation , 2002, Nature.

[85]  R. Bergman,et al.  Iridium-catalyzed H/D exchange into organic compounds in water. , 2002, Journal of the American Chemical Society.

[86]  T. Koetzle,et al.  Direct observation of eta 2-imine formation through beta-H abstraction between amide ligands. Neutron and X-ray diffraction structure of a dihydride imine ditantalum complex. , 2002, Chemical communications.

[87]  T. Tilley,et al.  Organolutetium Complexes in σ-Bond Metathesis Reactions Involving Silicon. Catalysts for the Hydrogenolysis of Si−C Bonds , 2001 .

[88]  W. McNeil,et al.  Intermolecular C−H Activation of Hydrocarbons by Tungsten Alkylidene Complexes: An Experimental and Computational Mechanistic Study , 2001 .

[89]  Z. Wu,et al.  Reactions of tetrakis(dimethylamide)-titanium, -zirconium and -hafnium with silanes: synthesis of unusual amide hydride complexes and mechanistic studies of titanium-silicon-nitride (Ti-Si-N) formation. , 2001, Journal of the American Chemical Society.

[90]  R. Bergman,et al.  Exceptionally low-temperature carbon--hydrogen/carbon--deuterium exchange reactions of organic and organometallic compounds catalyzed by the Cp*(PMe(3))IrH(ClCH(2)Cl)(+) cation. , 2001, Journal of the American Chemical Society.

[91]  T. Kitamura,et al.  Catalytic functionalization of arenes and alkanes via C-H bond activation. , 2001, Accounts of chemical research.

[92]  Samuel A. Johnson,et al.  New mode of coordination for the dinitrogen ligand: formation, bonding, and reactivity of a tantalum complex with a bridging N(2) unit that is both side-on and end-on. , 2001, Journal of the American Chemical Society.

[93]  Qingzheng Wang,et al.  Dehydrocoupling reactions of hydrosilanes with group 4 metallocenes Cp2MY2 (M = Ti, Zr, Hf; Y = F, OPh, NMe2) , 2000 .

[94]  Hongshi Zhen,et al.  Deuterium Migration in {(1,4,7-Triazacyclononane)Rh(alkyl)D[P(OMe)3]}+. Evidence for Mobility of Rhodium along Linear Alkane Chains in Inferred Rhodium−Alkane Complexes , 2000 .

[95]  R. Kempe Highlights der Renaissance der Amidometallchemie , 2000 .

[96]  Kempe Highlights in the Renaissance of Amidometal Chemistry. , 2000, Angewandte Chemie.

[97]  T. Tilley,et al.  Hydrosilylation Catalysis by C2-Symmetric Bis(silylamido) Complexes of Yttrium , 1999 .

[98]  Christoph Balzarek,et al.  Molybdocenkatalysierter intra‐ und intermolekularer H/D‐Austausch in wäßriger Lösung , 1999 .

[99]  Tyler,et al.  Intra- and Intermolecular H/D Exchange in Aqueous Solution Catalyzed by Molybdocenes. , 1999, Angewandte Chemie.

[100]  P. White,et al.  Hydrogen/Deuterium Exchange Reactions and Transfer Hydrogenations Catalyzed by [C5Me5Rh(olefin)2] Complexes: Conversion of Alkoxysilanes to Silyl Enolates† , 1999 .

[101]  W. Jones,et al.  Photochemical C−H Activation and Ligand Exchange Reactions of CpRe(PPh3)2H2. Phosphine Dissociation Is Not Involved , 1999 .

[102]  J. Y. Corey,et al.  Reactions of Hydrosilanes with Transition-Metal Complexes: Formation of Stable Transition-Metal Silyl Compounds. , 1999, Chemical reviews.

[103]  S. Gambarotta,et al.  C−H versus C−N Bond Cleavage Promoted by Niobium(II) Amide , 1998 .

[104]  M. Doyle New catalysts and methods for highly enantioselective metal carbene reactions , 1998 .

[105]  Patrick L. Holland,et al.  MONOMERIC CYCLOPENTADIENYLNICKEL METHOXO AND AMIDO COMPLEXES : SYNTHESIS, CHARACTERIZATION, REACTIVITY, AND USE FOR EXPLORING THE RELATIONSHIP BETWEEN H-X AND M-X BOND ENERGIES , 1997 .

[106]  T. Tilley,et al.  Structure and Reactivity of Chelating Imido−Amido Complexes of Tantalum. Mechanistic Studies on the Addition of Silanes to Ta−N Multiple Bonds , 1997 .

[107]  J. Love,et al.  Transformation of Coordinated Dinitrogen by Reaction with Dihydrogen and Primary Silanes , 1997, Science.

[108]  M. Akita,et al.  Conversion of a Diruthenium μ-Methylene Complex, Cp2Ru2(μ-CH2)(μ-CO)(CO)2, into Methane through Reduction with Hydrosilane: Reactivity of Silyl−μ-Methylene Intermediates Cp2Ru2(μ-CH2)(SiR3)(X)(CO)2 (X = H, SiR3) Relevant to Catalytic CO Hydrogenation and Activation of Si−H, C−H, and C−Si Bonds , 1996 .

[109]  Meiling Hung,et al.  Direct Observation of (Me3ECH2)5Ta (E = C, Si) as the Precursors to (Me3ECH2)3Ta:CHEMe3 and (Me3SiCH2)2Ta(.mu.-CSiMe3)2Ta(CH2SiMe3)2. Kinetic and Mechanistic Studies of the Formation of Alkylidene and Alkylidyne Ligands , 1995 .

[110]  P. Fanwick,et al.  INTRAMOLECULAR HYDROGENATION OF ARYLOXIDE LIGANDS AT NIOBIUM METAL CENTERS: STEREOCHEMICAL CONSEQUENCES OF REACTION REGIOCHEMISTRY , 1995 .

[111]  Z. Xue,et al.  Early-Transition-Metal Silyl Complexes Free from Anionic .pi.-Ligands. A New Family of Alkyl, Alkylidene, and Alkylidyne Compounds , 1994 .

[112]  P. Carroll,et al.  Alkylidene-transfer processes in the reactions of Cp2Ta(:CH2)(CH3) with silanes , 1990 .

[113]  D. H. Berry,et al.  Facile arene carbon-hydrogen bond activation by tantalum silyl complexes , 1989 .

[114]  W. Schaefer,et al.  .sigma.-Bond metathesis for carbon-hydrogen bonds of hydrocarbons and Sc-R (R = H, alkyl, aryl) bonds of permethylscandocene derivatives. Evidence for noninvolvement of the .pi. system in electrophilic activation of aromatic and vinylic C-H bonds , 1987 .

[115]  P. L. Gaus,et al.  Hydrogen-deuterium exchange of the anionic Group VIB transition-metal hydrides. Convenient, in situ deuterium transfer reagents , 1984 .

[116]  M. Thompson,et al.  Some aspects of the chemistry of alkyl and hydride derivatives of permethylscandocene , 1984 .

[117]  R. Planalp,et al.  Dialkyl bis[bis(trimethylsilyl)amide] Group IVA compounds. Phosphine-induced transformation of a bridging carbene into a metallacycle. Crystal structure of zirconium-to-nitrogen-bonded Zr[CH2Si(Me)2NSiMe3]2(Me2PCH2CH2PMe2) , 1983 .

[118]  J. Mayer,et al.  Hydrogen-transfer reactions which generate new imine, imido, and trimethylenemethane complexes of tantalum. , 1983, Journal of the American Chemical Society.

[119]  R. Schrock,et al.  Reduction of carbon monoxide by binuclear tantalum hydride complexes , 1983 .

[120]  T. Marks,et al.  Intra- and intermolecular organoactinide carbon-hydrogen activation pathways. Formation, properties, and reactions of thoracyclobutanes , 1983 .

[121]  S. J. Simpson CONCERNING THE REACTION OF METALLOCENE DICHLORIDES OF TITANIUM (IV) AND ZIRCONIUM(IV) WITH LITHIUM BIS(TRIMETHYLSILYL)AMIDE , 1981 .

[122]  S. J. Simpson,et al.  Preparation and hydrogen-deuterium exchange of alkyl and hydride bis(trimethylsilyl)amido derivatives of the actinide elements , 1981 .

[123]  M. Clerici,et al.  Catalytic C-Alkylation of Secondary Amines with Alkenes , 1980 .

[124]  S. J. Simpson,et al.  Hydrogen-deuterium exchange: perdeuteriohydridotris(hexamethyldisilylamido)thorium(IV) and -uranium(IV) , 1979 .

[125]  J. Bercaw,et al.  Dihydrogen reduction of isocyanides promoted by permethylzirconocene dihydride. A modeling study of carbon monoxide reduction , 1979 .

[126]  G. Wilkinson,et al.  Tetrakis(trimethylsilylmethyl)bis(μ-trimethylsilylmethylidyne)ditungsten† , 1976 .

[127]  F. Cotton,et al.  The tungsten-tungsten triple bond. 4. Structural characterization of hexakis(trimethylsilylmethyl)ditungsten and preparation of bis-.mu.-(trimethylsilylmethylidyne)-tetrakis(trimethylsilylmethyl)ditungsten , 1976 .

[128]  T. Cundari,et al.  Single-electron oxidation of N-heterocyclic carbene-supported nickel amides yielding benzylic C–H activation , 2013 .

[129]  G. Nikonov Recent Advances in Nonclassical Interligand Si…H Interactions , 2005 .

[130]  K. I. Goldberg,et al.  HOMOGENEOUS HYDROCARBON CH BOND ACTIVATION AND FUNCTIONALIZATION WITH PLATINUM , 2003 .

[131]  R. Schrock High oxidation state multiple metal-carbon bonds. , 2002, Chemical reviews.

[132]  R. Grubbs,et al.  The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. , 2001, Accounts of chemical research.

[133]  C. Copéret,et al.  H/D exchange between CH4 and CD4 catalysed by a silica supported tantalum hydride, (SiO)2Ta–H , 2000 .

[134]  T. Junk,et al.  Hydrogen isotope exchange reactions involving C–H (D, T) bonds , 1997 .

[135]  Z. Xue,et al.  Silyl alkylidene complexes free of anionic π ligands (Me3ECH2)2Ta(CHEMe3)(SiPh2But)(E = C, Si): PMe3-promoted conversions to bis(alkylidene) complexes through preferential silane elimination , 1996 .

[136]  O. Eisenstein,et al.  C-H ACTIVATION REACTIONS BY YTTRIUM AND LUTETIUM HYDRIDE COMPLEXES - H/D EXCHANGE VS METALATION OF HYDROCARBONS - IMPORTANCE OF THE HYBRIDIZATION STATE AT THE ALPHA-CARBON , 1995 .

[137]  T. Flood,et al.  Mechanism of activation of carbon-hydrogen bonds in tetramethylsilane and mesitylene and mechanism of intramolecular activation in trimethylphosphine on thermolysis of tetrakis(trimethylphosphine)hydridoneopentylosmium(II) , 1990 .

[138]  J. Shapley,et al.  Reversible, intramolecular H/D exchange between ring and metal sites in the benzylidyne complex H3Os3(CO)9(μ3-CC6D5) , 1988 .

[139]  Olga Kennard,et al.  Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds , 1987 .

[140]  P. L. Watson Facile C–H activation by lutetium–methyl and lutetium–hydride complexes , 1983 .

[141]  R. Planalp,et al.  Dialkyl bis[bis(trimethylsilyl)amido] group 4A metal complexes: Preparation of bridging carbene complexes by .gamma.-elimination of alkane. Crystal structure of {[ZrCHSi(Me)2N]SiMe3[N(SiMe3)2]}2 , 1983 .

[142]  W. A. Nugent,et al.  Catalytic C-H activation in early transition-metal dialkylamides and alkoxides , 1983 .

[143]  D. C. Bradley,et al.  4,4-Bis-(π-cyclopentadienyl)-2,2-dimethyl-1-trimethylsilylaza-2-sila-4-titanacyclobutane: a novel organometallic heterocycle , 1974 .

[144]  W. Mowat,et al.  Elimination stabilized alkyls. Part III. Trimethylsilylmethyl and neopentyl alkyls of transition metals , 1973 .