Robust Heart Rate Estimation During Physical Exercise Using Photoplethysmographic Signals

A method for estimating heart rate (HR) from photoplethysmographic (PPG) signal, during physical exercise, is presented in this paper. Accurate and reliable estimation of HR from PPG during intensive physical activity is challenging because intense motion artifacts can easily mask the true HR. If PPG signal is contaminated by intense motion artifacts, the highest peak of PPG spectrum is shifted from true HR due to motion artifacts. The proposed method employs a simple technique using spectral estimation and median filtering for HR estimation from intensely motion artifacts corrupted PPG signal. Experimental result for a database of 12 subjects recorded during fast running showed that the average absolute estimation error was 1.31 beats/minute.

[1]  Andriy Temko,et al.  Accurate Heart Rate Monitoring During Physical Exercises Using PPG , 2017, IEEE Transactions on Biomedical Engineering.

[2]  Takashi Sato,et al.  PARHELIA: Particle Filter-Based Heart Rate Estimation From Photoplethysmographic Signals During Physical Exercise , 2018, IEEE Transactions on Biomedical Engineering.

[3]  Zhilin Zhang,et al.  TROIKA: A General Framework for Heart Rate Monitoring Using Wrist-Type Photoplethysmographic Signals During Intensive Physical Exercise , 2014, IEEE Transactions on Biomedical Engineering.

[4]  Zhilin Zhang,et al.  Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction , 2015, IEEE Transactions on Biomedical Engineering.

[5]  Zhilin Zhang,et al.  Combining Nonlinear Adaptive Filtering and Signal Decomposition for Motion Artifact Removal in Wearable Photoplethysmography , 2016, IEEE Sensors Journal.

[6]  Ki H. Chon,et al.  A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor , 2015, Sensors.

[7]  Westgate Road,et al.  Photoplethysmography and its application in clinical physiological measurement , 2007 .

[8]  Marimuthu Palaniswami,et al.  An EEMD-PCA approach to extract heart rate, respiratory rate and respiratory activity from PPG signal , 2016, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[9]  Mehrdad Nourani,et al.  A Motion-Tolerant Adaptive Algorithm for Wearable Photoplethysmographic Biosensors , 2014, IEEE Journal of Biomedical and Health Informatics.

[10]  Zhilin Zhang,et al.  Photoplethysmography-Based Heart Rate Monitoring Using Asymmetric Least Squares Spectrum Subtraction and Bayesian Decision Theory , 2015, IEEE Sensors Journal.

[11]  Claudio Narduzzi,et al.  Measuring Heart Rate During Physical Exercise by Subspace Decomposition and Kalman Smoothing , 2018, IEEE Transactions on Instrumentation and Measurement.

[12]  Zhilin Zhang,et al.  Combining ensemble empirical mode decomposition with spectrum subtraction technique for heart rate monitoring using wrist-type photoplethysmography , 2015, Biomed. Signal Process. Control..

[13]  Weidong Wang,et al.  Motion artifact removal from photoplethysmographic signals by combining temporally constrained independent component analysis and adaptive filter , 2014, Biomedical engineering online.

[14]  Jean-Marc Vesin,et al.  Robust heart rate estimation using wrist-type photoplethysmographic signals during physical exercise: an approach based on adaptive filtering , 2017, Physiological measurement.

[15]  Sun K. Yoo,et al.  Motion artifact reduction in photoplethysmography using independent component analysis , 2006, IEEE Transactions on Biomedical Engineering.

[16]  Andriy Temko,et al.  Estimation of heart rate from photoplethysmography during physical exercise using Wiener filtering and the phase vocoder , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[17]  Marimuthu Palaniswami,et al.  Ensemble Empirical Mode Decomposition With Principal Component Analysis: A Novel Approach for Extracting Respiratory Rate and Heart Rate From Photoplethysmographic Signal , 2018, IEEE Journal of Biomedical and Health Informatics.

[18]  Amal Jubran,et al.  Pulse oximetry , 1999 .