An Anti-Islanding Method for Single-Phase Inverters Based on a Grid Voltage Sensorless Control

The detection of the islanding condition of a distributed generation (DG) system is crucial for safety reasons, as discussed in the IEEE standards and specifically required by some national codes. Several anti-islanding methods that are resident in the inverter have been investigated and classified as passive (measurement of the natural effects of islanding) or active (based on the measurement of the effects due to transients or harmonics deliberately introduced in the system). In case the power drained by the load matches the power generated by the DG inverter, the effect of islanding is small, and the passive methods fail. However, the active methods, which have been developed to overcome these limits, create disturbances that can interact with those generated by other DG systems. In this paper, a new anti-islanding method is proposed. It exploits the natural sensitivity of a grid-voltage sensorless control to disturbances to highlight the islanding condition. The adopted grid-voltage sensorless control is adapted to a single-phase system with the use of resonant controllers based on the internal model control law: resonant-controller-based observer results. Then, a Kalman-filter-based algorithm is used to detect the islanding condition based on the energy mismatch between the estimated third and fifth harmonics and the real ones. Experimental results support the analysis

[1]  P.J.M. Heskes,et al.  Harmonic interaction between a large number of distributed power inverters and the distribution network , 2004, IEEE Transactions on Power Electronics.

[2]  Robert Grover Brown,et al.  Introduction to random signal analysis and Kalman filtering , 1983 .

[3]  Guanrong Chen,et al.  Kalman Filtering with Real-time Applications , 1987 .

[4]  Mariusz Malinowski,et al.  Virtual flux based direct power control of three-phase PWM rectifiers , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[5]  H. Stemmler,et al.  Stationary frame generalized integrators for current control of active power filters with zero steady state error for current harmonics of concern under unbalanced and distorted operation conditions , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[6]  F. Blaabjerg,et al.  Sensorless control strategies for PWM rectifier , 2000, APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058).

[7]  Toshihisa Funabashi,et al.  A review of islanding detection methods for distributed resources , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[8]  Chern-Lin Chen,et al.  Automatic phase-shift method for islanding detection of grid-connected photovoltaic inverters , 2002 .

[9]  Frede Blaabjerg,et al.  Control in Power Electronics , 2002 .

[10]  Toshihiko Noguchi,et al.  Direct power control of PWM converter without power source voltage sensors , 1996, IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting.

[11]  V. Blasko,et al.  A novel control method of a VSC without AC line voltage sensors , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[12]  P.N. Enjeti,et al.  Development of a robust anti-islanding algorithm for utility interconnection of distributed fuel cell powered generation , 2004, IEEE Transactions on Power Electronics.

[13]  Donald Grahame Holmes,et al.  Stationary frame current regulation of PWM inverters with zero steady state error , 1999, 30th Annual IEEE Power Electronics Specialists Conference. Record. (Cat. No.99CH36321).

[14]  Zhihong Ye,et al.  Evaluation of anti-islanding schemes based on nondetection zone concept , 2003, IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03..

[15]  Ying-Yu Tzou,et al.  High-performance programmable AC power source with low harmonic distortion using DSP-based repetitive control technique , 1997 .

[16]  Mike Ropp,et al.  Using power line carrier communications to prevent islanding [of PV power systems] , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[17]  J.H.R. Enslin,et al.  Sensorless current control for active rectifiers , 1996, IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting.

[18]  M. Liserre,et al.  A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation , 2004, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04..

[19]  J.R. Espinoza,et al.  Decoupled control of PWM active-front rectifiers using only DC bus sensing , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).