Spintronics technology: past, present and future

Spintronics has emerged in the last two decades as both an extremely fruitful direction of research into the properties and usefulness of the spin degree of freedom of the electron as it can apply to the exponentially expanding world of electronics. Spintronics has infiltrated almost every household in the form of the read head sensors for the hard drives that inhabit every desktop and most laptop computers. Embedded magnetic random access memory (MRAM) and in-plane STT-RAM are rapidly replacing SRAM in a host of applications that do not require ultra-dense memories. Soon these embedded spintronic memories will permeate the cell phone market because they are much denser than SRAM, offer lower power at only slightly lower speed and are non-volatile. The present work in spintronics at most of the mainstream semiconductor companies and foundaries is focused on the development of perpendicular STT-MRAM, as a universal memory that can compete with the mainstream memories and surpass them in several key metrics. Several innovative ideas are presented where spintronics may have an impact because of the uniqueness of the approach. Nanomagnetic logic and storage may offer extremely high densities at very low power. Spin-torque oscillators are a very novel approach to pattern recognition that may be relevant for handling massive data sets. The spin of the electron may also be on the critical path for quantum computation or communication, another revolutionary change in how we process information.

[1]  V. V. Ryazanov,et al.  Magnetic Josephson Junctions With Superconducting Interlayer for Cryogenic Memory , 2013, IEEE Transactions on Applied Superconductivity.

[2]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[3]  R. W. Dave,et al.  A 4-Mb toggle MRAM based on a novel bit and switching method , 2005, IEEE Transactions on Magnetics.

[4]  J. Nowak,et al.  Erratum: “Spin torque switching of perpendicular Ta|CoFeB|MgO-based magnetic tunnel junctions” [Appl. Phys. Lett. 98, 022501 (2011)] , 2016 .

[5]  S. Yuasa,et al.  High Tunnel Magnetoresistance at Room Temperature in Fully Epitaxial Fe/MgO/Fe Tunnel Junctions due to Coherent Spin-Polarized Tunneling , 2004 .

[6]  M. Beasley,et al.  Superconducting memory based on ferromagnetism , 2006 .

[7]  M. Dyakonov,et al.  Optical orientation in a system of electrons and lattice nuclei in semiconductors. Theory , 1974 .

[8]  A. V. Nazarov,et al.  Spin Transfer Stimulated Microwave Emission in MgO Magnetic Tunnel Junctions , 2006, INTERMAG 2006 - IEEE International Magnetics Conference.

[9]  Shoji Ikeda,et al.  2Mb Spin-Transfer Torque RAM (SPRAM) with Bit-by-Bit Bidirectional Current Write and Parallelizing-Direction Current Read , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[10]  Baoshun Zhang,et al.  Ultralow-current-density and bias-field-free spin-transfer nano-oscillator , 2013, Scientific Reports.

[11]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[12]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[13]  J. Katine,et al.  Injection locking and phase control of spin transfer nano-oscillators. , 2005, Physical review letters.

[14]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[15]  Dong Hun Kim,et al.  Templated Self‐Assembly of Functional Oxide Nanocomposites , 2014, Advanced materials.

[16]  H. Ohno,et al.  Pd Layer Thickness Dependence of Tunnel Magnetoresistance Properties in CoFeB/MgO-Based Magnetic Tunnel Junctions with Perpendicular Anisotropy CoFe/Pd Multilayers , 2011 .

[17]  V. Cros,et al.  Synchronization of spin-transfer oscillators driven by stimulated microwave currents , 2005, INTERMAG 2006 - IEEE International Magnetics Conference.

[18]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[19]  Saied N. Tehrani,et al.  Submicron spin valve magnetoresistive random access memory cell , 1997 .

[20]  T. Zhao,et al.  Electrically assisted magnetic recording in multiferroic nanostructures. , 2007, Nano letters.

[21]  J. C. Sloncxewski Current-driven excitation of magnetic multilayers , 2003 .

[22]  B. Razavi A study of injection locking and pulling in oscillators , 2004, IEEE Journal of Solid-State Circuits.

[23]  V. V. Ryazanov,et al.  Magnetic switches based on Nb-PdFe-Nb Josephson junctions with a magnetically soft ferromagnetic interlayer , 2012 .

[24]  Jr.,et al.  Observation of standard spin-switch effects in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet , 2006, cond-mat/0608545.

[25]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[26]  Igor V. Vernik,et al.  Magnetic Josephson Junction Technology for Digital and Memory Applications , 2012 .

[27]  Mircea R. Stan,et al.  Advances and Future Prospects of Spin-Transfer Torque Random Access Memory , 2010, IEEE Transactions on Magnetics.

[28]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[29]  D. R. Krahn,et al.  The design of a one megabit non-volatile M-R memory chip using 1.5*5 mu m cells , 1988 .

[30]  S. Takahashi,et al.  Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM , 2008, 2008 IEEE International Electron Devices Meeting.

[31]  S.. Nagasawa,et al.  Yield Evaluation of 10-kA/cm $^{2}$ Nb Multi-Layer Fabrication Process Using Conventional Superconducting RAMs , 2007, IEEE Transactions on Applied Superconductivity.

[32]  Y. J. Lee,et al.  Enhancement of data retention and write current scaling for sub-20nm STT-MRAM by utilizing dual interfaces for perpendicular magnetic anisotropy , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[33]  T. Schulthess,et al.  Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches , 2001 .

[34]  Chao Liu,et al.  Nonmagnetic shell in surfactant-coated FePt nanoparticles , 2004 .

[35]  V. Metlushko,et al.  Magnetic QCA systems , 2005, Microelectron. J..

[36]  M. Nakayama,et al.  Spin transfer switching in TbCoFe∕CoFeB∕MgO∕CoFeB∕TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy , 2008 .

[37]  J. Nowak,et al.  Spin torque switching of perpendicular Ta∣CoFeB∣MgO-based magnetic tunnel junctions , 2011 .

[38]  V. Cros,et al.  Impact of the electrical connection of N Spin Transfer Oscillators on their synchronization : an analytical study , 2008, 0804.4855.

[39]  R. Loloee,et al.  Spin Triplet Supercurrent in Co/Ni Multilayer Josephson Junctions with Perpendicular Anisotropy , 2012, 1208.3118.

[40]  J. Slaughter,et al.  Progress and outlook for MRAM technology , 1999, IEEE International Magnetics Conference.

[41]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[42]  Y. J. Lee,et al.  Extended scalability of perpendicular STT-MRAM towards sub-20nm MTJ node , 2011, 2011 International Electron Devices Meeting.

[43]  Nathan Newman,et al.  Switching at small magnetic fields in Josephson junctions fabricated with ferromagnetic barrier layers , 2014 .

[44]  Hitoshi Kubota,et al.  Tunnel Magnetoresistance above 170% and Resistance–Area Product of 1 Ω (µm)2 Attained by In situ Annealing of Ultra-Thin MgO Tunnel Barrier , 2011 .

[45]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[46]  J. Åkerman,et al.  Mutually synchronized bottom-up multi-nanocontact spin–torque oscillators , 2013, Nature Communications.

[47]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[48]  N. Shimomura,et al.  Impact of ultra low power and fast write operation of advanced perpendicular MTJ on power reduction for high-performance mobile CPU , 2012, 2012 International Electron Devices Meeting.

[49]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[50]  J. M. D. Coey,et al.  Annealing of CoFeB/MgO based single and double barrier magnetic tunnel junctions: Tunnel magnetoresistance, bias dependence, and output voltage , 2009 .

[51]  Luan Tran,et al.  45nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1T/1MTJ cell , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[52]  E. Izhikevich,et al.  Oscillatory Neurocomputers with Dynamic Connectivity , 1999 .

[53]  N. Klenov,et al.  Progress in the area of new energy-efficient basic elements for superconducting electronics , 2014 .

[54]  Mircea R. Stan,et al.  Spin torque nano oscillators as key building blocks for the Systems-on-Chip of the future , 2014, 2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[55]  Thibaut Devolder,et al.  Scalability of Magnetic Random Access Memories Based on an In-Plane Magnetized Free Layer , 2011 .

[56]  Burm Baek,et al.  Hybrid superconducting-magnetic memory device using competing order parameters. , 2013, Nature communications.

[57]  M. G. Blamire,et al.  Controllable Josephson current through a pseudospin-valve structure , 2004 .

[58]  Supriyo Bandyopadhyay Power dissipation in spintronic devices: a general perspective. , 2007, Journal of nanoscience and nanotechnology.

[59]  Tom Zhong,et al.  High Spin Torque Efficiency of Magnetic Tunnel Junctions with MgO/CoFeB/MgO Free Layer , 2012 .

[60]  William J. Gallagher,et al.  Microstructured magnetic tunnel junctions (invited) , 1997 .

[61]  Wolfgang Porod,et al.  Magnetic quantum-dot cellular automata: Recent developments and prospects , 2008 .

[62]  T. Shinjo,et al.  The magnetoresistive element. , 1992 .

[63]  T. Daibou,et al.  Tunnel Magnetoresistance Over 100% in MgO-Based Magnetic Tunnel Junction Films With Perpendicular Magnetic L1$_{0}$-FePt Electrodes , 2008, IEEE Transactions on Magnetics.

[64]  A. Fert Nobel Lecture: Origin, development, and future of spintronics , 2008 .

[65]  E. Tsymbal,et al.  Handbook of spin transport and magnetism , 2011 .

[66]  W. Rippard,et al.  Direct-current induced dynamics in Co90 Fe10/Ni80 Fe20 point contacts. , 2003, Physical review letters.

[67]  Mircea R. Stan,et al.  Computing with hybrid CMOS/STO circuits , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[68]  D. S. Holmes,et al.  Energy-Efficient Superconducting Computing—Power Budgets and Requirements , 2013, IEEE Transactions on Applied Superconductivity.

[69]  Jr.,et al.  Critical current behavior in Josephson junctions with the weak ferromagnet PdNi , 2009, 0901.1321.

[70]  Roger Hilsen Koch,et al.  Batch-fabricated spin-injection magnetic switches , 2002 .

[71]  V. Safarov,et al.  Optical orientation in a system of electrons and lattice nuclei in semiconductors. Experiment , 1974 .

[72]  M. Stan,et al.  Synchronized Spin Torque Nano-Oscillators: From Theory to Applications , 2015 .

[73]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[74]  Xiaofan Meng,et al.  64-kb Hybrid Josephson-CMOS 4 Kelvin RAM With 400 ps Access Time and 12 mW Read Power , 2013, IEEE Transactions on Applied Superconductivity.

[75]  D. Ralph,et al.  Microwave oscillations of a nanomagnet driven by a spin-polarized current , 2003, Nature.

[76]  H. Ohno,et al.  Current-Induced Magnetization Switching in MgO Barrier Magnetic Tunnel Junctions With CoFeB-Based Synthetic Ferrimagnetic Free Layers , 2008, IEEE Transactions on Magnetics.

[77]  William H. Rippard,et al.  Materials dependence of the spin-momentum transfer efficiency and critical current in ferromagnetic metal/Cu multilayers , 2003 .

[78]  J. Slaughter,et al.  A Fully Functional 64 Mb DDR3 ST-MRAM Built on 90 nm CMOS Technology , 2013, IEEE Transactions on Magnetics.

[79]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[80]  Gurney,et al.  Giant magnetoresistive in soft ferromagnetic multilayers. , 1991, Physical review. B, Condensed matter.

[81]  Mircea R. Stan,et al.  Nano-pattemed coupled spin torque nano oscillator (STNO) arrays — A potentially disruptive multipurpose nanotechnology , 2013, 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS).

[82]  H. Ohno,et al.  Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature , 2008 .

[83]  S. Wolf,et al.  Microstructural effects of chemical island templating in patterned matrix-pillar oxide nanocomposites , 2015, 1501.01061.

[84]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[85]  Xiaofan Meng,et al.  New Delay-Time Measurements on a 64-kb Josephson–CMOS Hybrid Memory With a 600-ps Access Time , 2010, IEEE Transactions on Applied Superconductivity.

[86]  S. Le,et al.  Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited) , 2014 .

[87]  M. Beasley,et al.  Superconducting magnetoresistive memory element using controlled exchange interaction , 1997 .

[88]  A. Fert,et al.  Spin-polarized current induced switching in Co/Cu/Co pillars , 2001 .

[89]  M. Hosomi,et al.  A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[90]  Critical current oscillations in strong ferromagnetic pi junctions. , 2006, Physical review letters.

[91]  V. Cros,et al.  Spin-torque building blocks. , 2014, Nature Materials.

[92]  J. Katine,et al.  Mutual phase-locking of microwave spin torque nano-oscillators , 2005, Nature.

[93]  K. Tsunekawa,et al.  230% room temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[94]  Dmitri E. Nikonov,et al.  Power Dissipation in Spintronic Devices Out of Thermodynamic Equilibrium , 2006 .

[95]  William H. Rippard,et al.  Comparison of frequency, linewidth, and output power in measurements of spin-transfer nanocontact oscillators , 2006 .

[96]  南方 量二,et al.  Magnetoresistive element and a magnetic memory using the same , 2000 .

[97]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[98]  Mircea R. Stan,et al.  The Promise of Nanomagnetics and Spintronics for Future Logic and Universal Memory , 2010, Proceedings of the IEEE.

[99]  Hitoshi Kubota,et al.  High efficient spin transfer torque writing on perpendicular magnetic tunnel junctions for high density MRAMs , 2010 .

[100]  Ralph,et al.  Current-driven magnetization reversal and spin-wave excitations in Co /Cu /Co pillars , 1999, Physical review letters.

[101]  J. Rowell,et al.  Erratum: “Switching at small magnetic fields in Josephson junctions fabricated with ferromagnetic barrier layers” [Appl. Phys. Lett. 104, 022602 (2014)] , 2014 .

[102]  Tom Zhong,et al.  Demonstration of fully functional 8Mb perpendicular STT-MRAM chips with sub-5ns writing for non-volatile embedded memories , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[103]  Hitoshi Kubota,et al.  High Magnetoresistance Ratio and Low Resistance–Area Product in Magnetic Tunnel Junctions with Perpendicularly Magnetized Electrodes , 2010 .

[104]  C. Lent,et al.  Realization of a Functional Cell for Quantum-Dot Cellular Automata , 1997 .

[105]  S. Yuasa,et al.  Ultrathin Co/Pt and Co/Pd superlattice films for MgO-based perpendicular magnetic tunnel junctions , 2010 .

[106]  S. Wolf,et al.  Directed self-assembly of epitaxial CoFe2O(4)-BiFeO3 multiferroic nanocomposites. , 2012, Nano letters.

[107]  Michel Dyakonov,et al.  Current-induced spin orientation of electrons in semiconductors , 1971 .

[108]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[109]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[110]  V. Speriosu,et al.  Spin-valve RAM cell , 1995 .

[111]  P. M. Tedrow,et al.  Spin-Dependent Tunneling into Ferromagnetic Nickel , 1971 .

[112]  T. Andre,et al.  Device performance in a fully functional 800MHz DDR3 spin torque magnetic random access memory , 2013, 2013 5th IEEE International Memory Workshop.

[113]  V. V. Ryazanov,et al.  Ferromagnetic Josephson switching device with high characteristic voltage , 2012 .