Steep decrease in the specific membrane resistance in the apical dendrites of hippocampal CA1 pyramidal neurons

[1]  M. Okada,et al.  Non-uniformity of membrane property improves dendritic signal transfer in hippocampal CA1 pyramidal neuron , 2007, Neuroscience Research.

[2]  Shigeyoshi Itohara,et al.  Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments , 2007, Neuroscience Research.

[3]  Wilfrid Rall An historical perspective on modeling dendrites , 2007 .

[4]  Masato Okada,et al.  Estimated distribution of specific membrane resistance in hippocampal CA1 pyramidal neuron , 2006, Brain Research.

[5]  Okada Masato,et al.  Steep decrease of specific membrane resistance in distal apical dendrite of hippocampal CA1 pyramidal neuron , 2006 .

[6]  Nelson Spruston,et al.  Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites , 2005, The Journal of physiology.

[7]  W. Kath,et al.  Computational modeling of dendrites. , 2005, Journal of neurobiology.

[8]  B. Kampa,et al.  Synaptic integration in dendritic trees. , 2005, Journal of neurobiology.

[9]  J. Jefferys,et al.  Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro , 2004, The Journal of physiology.

[10]  G. Stuart,et al.  Role of dendritic synapse location in the control of action potential output , 2003, Trends in Neurosciences.

[11]  M. Andreasen,et al.  Influence of the hyperpolarization-activated cation current, Ih, on the electrotonic properties of the distal apical dendrites of hippocampal CA1 pyramidal neurones , 2002, Brain Research.

[12]  Shinsuke Shimojo,et al.  A model of magnetic stimulation of neocortical neurons , 2001, Neurocomputing.

[13]  H. Miyakawa,et al.  Dendritic attenuation of synaptic potentials in the CA1 region of rat hippocampal slices detected with an optical method , 2001, The European journal of neuroscience.

[14]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[15]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[16]  M Migliore,et al.  Dendritic potassium channels in hippocampal pyramidal neurons , 2000, The Journal of physiology.

[17]  I Segev,et al.  Signal Transfer in Passive Dendrites with Nonuniform Membrane Conductance , 1999, The Journal of Neuroscience.

[18]  F. Rattay,et al.  The basic mechanism for the electrical stimulation of the nervous system , 1999, Neuroscience.

[19]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[20]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[21]  F. Rattay,et al.  Analysis of the electrical excitation of CNS neurons , 1998, IEEE Transactions on Biomedical Engineering.

[22]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[23]  Terrence J. Sejnowski,et al.  Modeling active dendritic processes in pyramidal neurons , 1998 .

[24]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[25]  P. Fromherz,et al.  Cable Properties of Dendrites in Hippocampal Neurons of the Rat Mapped by a Voltage‐sensitive Dye , 1997, The European journal of neuroscience.

[26]  J. Hounsgaard,et al.  Detection of a membrane shunt by DC field polarization during intracellular and whole cell recording. , 1997, Journal of neurophysiology.

[27]  S Nedergaard,et al.  Dendritic electrogenesis in rat hippocampal CA1 pyramidal neurons: functional aspects of Na+ and Ca2+ currents in apical dendrites , 1996, Hippocampus.

[28]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[29]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[30]  Daniel Johnston,et al.  Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties , 1994, Trends in Neurosciences.

[31]  B Sakmann,et al.  Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[33]  Idan Segev,et al.  The theoretical foundation of dendritic function: Selected papers of Wilfrid Rall with commentaries , 1994 .

[34]  D. Durand,et al.  Effects of induced electric fields on finite neuronal structures: a simulation study , 1993, IEEE Transactions on Biomedical Engineering.

[35]  A Aertsen,et al.  Current Source Density Profiles of Optical Recording Maps: a New Approach to the Analysis of Spatio‐temporal Neural Activity Patterns , 1993, The European journal of neuroscience.

[36]  Richard Durbin,et al.  The computing neuron , 1989 .

[37]  F. Rattay Analysis of Models for External Stimulation of Axons , 1986, IEEE Transactions on Biomedical Engineering.

[38]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[39]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[40]  W Rall,et al.  Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. , 1967, Journal of neurophysiology.

[41]  Wilfrid Rall,et al.  Theoretical significance of dendritic trees for neuronal input-output relations , 1964 .

[42]  W. Rall Membrane potential transients and membrane time constant of motoneurons. , 1960, Experimental neurology.

[43]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.