Generator property and stability for generalized difference operators

We introduce generalized difference operators, characterize their generator property and estimate the growth bound of the generated semigroup. The results are illustrated by several examples.

[1]  R. Nagel,et al.  The semigroup approach to transport processes in networks , 2010 .

[2]  Hans Zwart,et al.  Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators , 2005, SIAM J. Control. Optim..

[3]  Eszter Sikolya,et al.  Vertex control of flows in networks , 2008, Networks Heterog. Media.

[4]  Bernd Klöss,et al.  Difference operators as semigroup generators , 2010 .

[5]  J. A. Villegas,et al.  A Port-Hamiltonian Approach to Distributed Parameter Systems , 2007 .

[6]  Hans Zwart,et al.  Exponential Stability of a Class of Boundary Control Systems , 2009, IEEE Transactions on Automatic Control.

[7]  Eszter Sikolya,et al.  Spectral properties and asymptotic periodicity of flows in networks , 2005 .

[8]  Hans Zwart,et al.  Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain , 2010 .

[9]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[10]  Arjan van der Schaft,et al.  Part III: Distributed Parameter Systems A Port Hamiltonian Approach , 2008 .

[11]  Bernd Klöss,et al.  The flow approach for waves in networks , 2012 .

[12]  R. Nagel,et al.  Maximal Controllability for Boundary Control Problems , 2010 .

[13]  Hans Zwart,et al.  Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .

[14]  Britta Dorn,et al.  Semigroups for flows in infinite networks , 2008 .

[15]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .