Generator property and stability for generalized difference operators
暂无分享,去创建一个
[1] R. Nagel,et al. The semigroup approach to transport processes in networks , 2010 .
[2] Hans Zwart,et al. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators , 2005, SIAM J. Control. Optim..
[3] Eszter Sikolya,et al. Vertex control of flows in networks , 2008, Networks Heterog. Media.
[4] Bernd Klöss,et al. Difference operators as semigroup generators , 2010 .
[5] J. A. Villegas,et al. A Port-Hamiltonian Approach to Distributed Parameter Systems , 2007 .
[6] Hans Zwart,et al. Exponential Stability of a Class of Boundary Control Systems , 2009, IEEE Transactions on Automatic Control.
[7] Eszter Sikolya,et al. Spectral properties and asymptotic periodicity of flows in networks , 2005 .
[8] Hans Zwart,et al. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain , 2010 .
[9] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[10] Arjan van der Schaft,et al. Part III: Distributed Parameter Systems A Port Hamiltonian Approach , 2008 .
[11] Bernd Klöss,et al. The flow approach for waves in networks , 2012 .
[12] R. Nagel,et al. Maximal Controllability for Boundary Control Problems , 2010 .
[13] Hans Zwart,et al. Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .
[14] Britta Dorn,et al. Semigroups for flows in infinite networks , 2008 .
[15] M. Marcus,et al. A Survey of Matrix Theory and Matrix Inequalities , 1965 .