Exploiting emoticons in sentiment analysis

As people increasingly use emoticons in text in order to express, stress, or disambiguate their sentiment, it is crucial for automated sentiment analysis tools to correctly account for such graphical cues for sentiment. We analyze how emoticons typically convey sentiment and demonstrate how we can exploit this by using a novel, manually created emoticon sentiment lexicon in order to improve a state-of-the-art lexicon-based sentiment classification method. We evaluate our approach on 2,080 Dutch tweets and forum messages, which all contain emoticons and have been manually annotated for sentiment. On this corpus, paragraph-level accounting for sentiment implied by emoticons significantly improves sentiment classification accuracy. This indicates that whenever emoticons are used, their associated sentiment dominates the sentiment conveyed by textual cues and forms a good proxy for intended sentiment.

[1]  Uzay Kaymak,et al.  Mining Economic Sentiment Using Argumentation Structures , 2010, ER Workshops.

[2]  Landra L. Rezabek,et al.  Visual Cues in Computer-Mediated Communication: Supplementing Text with Emoticons , 1998 .

[3]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[4]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[5]  Prem Melville Social Media Analytics: Channeling the Power of the Blogosphere for Marketing Insight , 2009 .

[6]  J. Burgoon,et al.  Nonverbal Communication: The Unspoken Dialogue , 1988 .

[7]  K. Shadan,et al.  Available online: , 2012 .

[8]  Stanley Feldstein,et al.  On Gesture: Its Complementary Relationship With Speech , 2014 .

[9]  Lee-Ellen Marvin,et al.  Spoof, Spam, Lurk and Lag: the Aesthetics of Text-based Virtual Realities , 2006, J. Comput. Mediat. Commun..

[10]  Carlo Strapparava,et al.  SemEval-2007 Task 14: Affective Text , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[11]  Kimberly D. Voll,et al.  Extracting sentiment as a function of discourse structure and topicality , 2008 .

[12]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[13]  Roberto Navigli,et al.  Word sense disambiguation: A survey , 2009, CSUR.

[14]  Flavius Frasincar,et al.  Sentiment Analysis with a Multilingual Pipeline , 2011, WISE.

[15]  Terry L. Childers,et al.  Conditions for a Picture-Superiority Effect on Consumer Memory , 1984 .

[16]  Uzay Kaymak,et al.  Polarity analysis of texts using discourse structure , 2011, CIKM '11.

[17]  Jonathon Read,et al.  Using Emoticons to Reduce Dependency in Machine Learning Techniques for Sentiment Classification , 2005, ACL.

[18]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[19]  R. Shepard Recognition memory for words, sentences, and pictures , 1967 .

[20]  Diane F. Witmer,et al.  On-Line Smiles: Does Gender Make a Difference in the Use of Graphic Accents? , 2006, J. Comput. Mediat. Commun..

[21]  Shlomo Argamon,et al.  Using appraisal groups for sentiment analysis , 2005, CIKM '05.

[22]  Mike Thelwall,et al.  Sentiment in short strength detection informal text , 2010 .

[23]  Rada Mihalcea,et al.  Learning Multilingual Subjective Language via Cross-Lingual Projections , 2007, ACL.

[24]  ThelwallMike,et al.  Sentiment strength detection in short informal text , 2010 .

[25]  Khurshid Ahmad,et al.  Sentiment Polarity Identification in Financial News: A Cohesion-based Approach , 2007, ACL.

[26]  Bernard J. Jansen,et al.  Twitter power: Tweets as electronic word of mouth , 2009, J. Assoc. Inf. Sci. Technol..

[27]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[28]  Mike Thelwall,et al.  A Study of Information Retrieval Weighting Schemes for Sentiment Analysis , 2010, ACL.

[29]  Diego Reforgiato Recupero,et al.  OASYS: An Opinion Analysis System , 2006, AAAI 2006.

[30]  Uzay Kaymak,et al.  Analyzing Sentiment in a Large Set of Web Data While Accounting for Negation , 2011, AWIC.

[31]  Flavius Frasincar,et al.  Sentiment Lexicon Creation from Lexical Resources , 2011, BIS.