Mean-Field Games and Dynamic Demand Management in Power Grids

This paper applies mean-field game theory to dynamic demand management. For a large population of electrical heating or cooling appliances (called agents), we provide a mean-field game that guarantees desynchronization of the agents thus improving the power network resilience. Second, for the game at hand, we exhibit a mean-field equilibrium, where each agent adopts a bang-bang switching control with threshold placed at a nominal temperature. At equilibrium, through an opportune design of the terminal penalty, the switching control regulates the mean temperature (computed over the population) and the mains frequency around the nominal value. To overcome Zeno phenomena we also adjust the bang-bang control by introducing a thermostat. Third, we show that the equilibrium is stable in the sense that all agents’ states, initially at different values, converge to the equilibrium value or remain confined within a given interval for an opportune initial distribution.

[1]  Yves Achdou,et al.  Mean Field Games: Numerical Methods for the Planning Problem , 2012, SIAM J. Control. Optim..

[2]  Yves Achdou,et al.  Mean Field Games: Numerical Methods , 2010, SIAM J. Numer. Anal..

[3]  A. Lachapelle,et al.  COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS , 2010 .

[4]  Michele Rostan,et al.  Concepts and Methods , 2014 .

[5]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[6]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[7]  Clark W. Gellings,et al.  Demand-side management: Concepts and methods , 1993 .

[8]  Quanyan Zhu,et al.  Hybrid risk-sensitive mean-field stochastic differential games with application to molecular biology , 2011, IEEE Conference on Decision and Control and European Control Conference.

[9]  Fabio Bagagiolo Optimal control of finite horizon type for a multidimensional delayed switching system , 2005 .

[10]  R. Rosenthal,et al.  Anonymous sequential games , 1988 .

[11]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[12]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[13]  Joseph H. Eto,et al.  Demand Response Spinning Reserve Demonstration , 2007 .

[14]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[15]  Hamidou Tembine,et al.  Electrical Vehicles in the Smart Grid: A Mean Field Game Analysis , 2011, IEEE Journal on Selected Areas in Communications.

[16]  Losser Alphonse,et al.  Selten (Reinhard) - Preispolitik der Mehrproduktenunternehmung in der statischen Theorie , 1970 .

[17]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[18]  David Angeli,et al.  A Stochastic Approach to “Dynamic-Demand” Refrigerator Control , 2012, IEEE Transactions on Control Systems Technology.

[19]  Fabio Bagagiolo An infinite horizon optimal control problem for some switching systems , 2001 .

[20]  Ian A. Hiskens,et al.  Achieving Controllability of Electric Loads , 2011, Proceedings of the IEEE.

[21]  Dario Bauso,et al.  Objective function design for robust optimality of linear control under state-constraints and uncertainty , 2011 .

[22]  Quanyan Zhu,et al.  A multi-resolution large population game framework for smart grid demand response management , 2011, International Conference on NETwork Games, Control and Optimization (NetGCooP 2011).

[23]  Benjamin Van Roy,et al.  Oblivious Equilibrium: A Mean Field Approximation for Large-Scale Dynamic Games , 2005, NIPS.

[24]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[25]  Hamidou Tembine Risk-sensitive mean field stochastic games , 2011, IEEE Conference on Decision and Control and European Control Conference.

[26]  Quanyan Zhu,et al.  Mixed integer optimal compensation: Decompositions and mean-field approximations , 2012, 2012 American Control Conference (ACC).

[27]  P. Lions,et al.  Mean field games , 2007 .

[28]  A. Visintin Differential models of hysteresis , 1994 .

[29]  T. Başar,et al.  Risk-sensitive mean field stochastic differential games , 2011 .

[30]  Martino Bardi,et al.  Explicit solutions of some linear-quadratic mean field games , 2012, Networks Heterog. Media.

[31]  Monique Dauge,et al.  Koiter Estimate Revisited , 2010 .

[32]  P. Caines,et al.  Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[33]  Dario Bauso,et al.  Mean Field Linear Quadratic Games with Set Up Costs , 2011, International Conference on NETwork Games, Control and Optimization (NetGCooP 2011).

[34]  Duncan S. Callaway,et al.  State Estimation and Control of Electric Loads to Manage Real-Time Energy Imbalance , 2013, IEEE Transactions on Power Systems.

[35]  Ian A. Hiskens,et al.  Decentralized charging control for large populations of plug-in electric vehicles , 2010, 49th IEEE Conference on Decision and Control (CDC).

[36]  Hamidou Tembine,et al.  Robust Mean Field Games with Application to Production of an Exhaustible Resource , 2012, ROCOND.