Content-Based Video Indexing and Retrieval using Key frames Texture, Edge and Motion Features

In this paper, a novel algorithm for content-based video indexing and retrieval using key-frames texture, edge, and motion features is presented. The algorithm extracts key frames from a video using k-means clustering based method, followed by extraction of texture, edge, and motion features to represent a video with the feature vector. The algorithm is evaluated on a database of three hundred and thirty five videos (collected from TRECVID 2005, Google, and BBC) of four types. The performance of the proposed framework is compared with volume local binary patterns (VLBP) method. The proposed algorithm outperforms well compare to VLBP method.

[1]  Martin Szummer,et al.  Temporal texture modeling , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[2]  Chenliang Xu,et al.  A Thousand Frames in Just a Few Words: Lingual Description of Videos through Latent Topics and Sparse Object Stitching , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Vincent S. Tseng,et al.  Efficient content-based video retrieval by mining temporal patterns , 2008, MDM '08.

[4]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[5]  Xinbo Gao,et al.  A Video Shot Boundary Detection Algorithm Based on Feature Tracking , 2006, RSKT.

[6]  Liang-Tien Chia,et al.  A new motion histogram to index motion content in video segments , 2005, Pattern Recognit. Lett..

[7]  Cordelia Schmid,et al.  An Image-Based Approach to Video Copy Detection With Spatio-Temporal Post-Filtering , 2010, IEEE Transactions on Multimedia.

[8]  Zi Huang,et al.  Near-duplicate video retrieval: Current research and future trends , 2013, CSUR.

[9]  Zi Huang,et al.  Practical Online Near-Duplicate Subsequence Detection for Continuous Video Streams , 2010, IEEE Transactions on Multimedia.

[10]  Steven C. H. Hoi,et al.  Chinese University of Hong Kong at TRECVID 2006: Shot Boundary Detection and Video Search , 2006, TRECVID.

[11]  Stuart Harvey Rubin,et al.  A Human-Centered Multiple Instance Learning Framework for Semantic Video Retrieval , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[12]  Li Li,et al.  A Survey on Visual Content-Based Video Indexing and Retrieval , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[13]  Sudeep Sarkar,et al.  Temporally coherent interpretations for long videos using pattern theory , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  J. Priyadarshini,et al.  Reducing Semantic Gap in Video Retrieval with Fusion: A Survey , 2015 .

[15]  Dmitry Chetverikov,et al.  A Brief Survey of Dynamic Texture Description and Recognition , 2005, CORES.

[16]  Kate Saenko,et al.  Generating Natural-Language Video Descriptions Using Text-Mined Knowledge , 2013, AAAI.

[17]  Ehud Rivlin,et al.  Understanding Video Events: A Survey of Methods for Automatic Interpretation of Semantic Occurrences in Video , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[18]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Volume Local Binary Patterns , 2006, WDV.

[19]  Fei Wang,et al.  Real-time large scale near-duplicate web video retrieval , 2010, ACM Multimedia.

[20]  Meng Wang,et al.  Correlative Linear Neighborhood Propagation for Video Annotation , 2009, IEEE Trans. Syst. Man Cybern. Part B.

[21]  Dmitry Chetverikov,et al.  Dynamic Texture Recognition Using Normal Flow and Texture Regularity , 2005, IbPRIA.

[22]  Qiang Ji,et al.  Video Affective Content Analysis: A Survey of State-of-the-Art Methods , 2015, IEEE Transactions on Affective Computing.

[23]  D. Chetverikov,et al.  Normal versus complete flow in dynamic texture recognition: a comparative study , 2005 .

[24]  Fiaz Hussain,et al.  Video Indexing: A Survey , 2014 .

[25]  Sarah V. Porter,et al.  Video Segmentation and Indexing using Motion Estimation , 2004 .

[26]  H. Elminir Multi feature content based video retrieval using high level semantic concept , 2012 .

[27]  John R. Smith,et al.  Video texture indexing using spatio-temporal wavelets , 2002, Proceedings. International Conference on Image Processing.

[28]  Irfan A. Essa,et al.  Structure from Statistics - Unsupervised Activity Analysis using Suffix Trees , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[29]  James Allan,et al.  Zero-shot video retrieval using content and concepts , 2013, CIKM.

[30]  David A. Shamma,et al.  The New Data and New Challenges in Multimedia Research , 2015, ArXiv.