Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory
暂无分享,去创建一个
[1] Harry J. Lipkin,et al. Validity of many-body approximation methods for a solvable model: (II). Linearization procedures , 1965 .
[2] H. Lipkin,et al. VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL. III. DIAGRAM SUMMATIONS , 1965 .
[3] A. Klein,et al. GENERALIZED HARTREE-FOCK APPROXIMATION FOR THE CALCULATION OF COLLECTIVE STATES OF A FINITE MANY-PARTICLE SYSTEM , 1963 .
[4] A. B. Volkov. A SOLUBLE MODEL FOR COMBINED PAIRING AND MONOPOLE-MONOPOLE INTERACTIONS , 1963 .
[5] A. Glick. CORRECTIONS TO THE DIELECTRIC CONSTANT OF A DEGENERATE ELECTRON GAS , 1963 .
[6] Leo P. Kadanoff,et al. CONSERVATION LAWS AND CORRELATION FUNCTIONS , 1961 .
[7] D. Thouless,et al. VIBRATIONS OF SPHERICAL NUCLEI , 1961 .
[8] L. Castillejo,et al. THE DIPOLE STATE IN NUCLEI , 1961 .
[9] Glick. LINEAR RESPONSE FUNCTION OF A MANY FERMION SYSTEM. Technical Note No. 10 , 1961 .
[10] M. Baranger. Extension of the Shell Model for Heavy Spherical Nuclei , 1960 .
[11] R. A. Ferrell,et al. COLLECTIVE ENHANCEMENT OF E2 MATRIX ELEMENTS IN LIGHT NUCLEI , 1959 .
[12] Julian Schwinger,et al. Theory of Many-Particle Systems. I , 1959 .
[13] С. В. Тябликов. Запаздывающие и опережающие функции Грина в теории ферромагнетизма@@@Lagging and anticipating greene functions in the theory of ferromagnetism , 1959 .
[14] D. Dubois,et al. ELECTRON INTERACTIONS. PART I. FIELD THEORY OF A DEGENERATE ELECTRON GAS , 1959 .
[15] P. Anderson. Random-Phase Approximation in the Theory of Superconductivity , 1958 .
[16] A. Klein,et al. PERTURBATION THEORY FOR AN INFINITE MEDIUM OF FERMIONS , 1958 .
[17] L. Cooper,et al. Theory of superconductivity , 1957 .
[18] D. Pines. A Collective Description of-Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas , 1953 .