Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory

[1]  Harry J. Lipkin,et al.  Validity of many-body approximation methods for a solvable model: (II). Linearization procedures , 1965 .

[2]  H. Lipkin,et al.  VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL. III. DIAGRAM SUMMATIONS , 1965 .

[3]  A. Klein,et al.  GENERALIZED HARTREE-FOCK APPROXIMATION FOR THE CALCULATION OF COLLECTIVE STATES OF A FINITE MANY-PARTICLE SYSTEM , 1963 .

[4]  A. B. Volkov A SOLUBLE MODEL FOR COMBINED PAIRING AND MONOPOLE-MONOPOLE INTERACTIONS , 1963 .

[5]  A. Glick CORRECTIONS TO THE DIELECTRIC CONSTANT OF A DEGENERATE ELECTRON GAS , 1963 .

[6]  Leo P. Kadanoff,et al.  CONSERVATION LAWS AND CORRELATION FUNCTIONS , 1961 .

[7]  D. Thouless,et al.  VIBRATIONS OF SPHERICAL NUCLEI , 1961 .

[8]  L. Castillejo,et al.  THE DIPOLE STATE IN NUCLEI , 1961 .

[9]  Glick LINEAR RESPONSE FUNCTION OF A MANY FERMION SYSTEM. Technical Note No. 10 , 1961 .

[10]  M. Baranger Extension of the Shell Model for Heavy Spherical Nuclei , 1960 .

[11]  R. A. Ferrell,et al.  COLLECTIVE ENHANCEMENT OF E2 MATRIX ELEMENTS IN LIGHT NUCLEI , 1959 .

[12]  Julian Schwinger,et al.  Theory of Many-Particle Systems. I , 1959 .

[13]  С. В. Тябликов Запаздывающие и опережающие функции Грина в теории ферромагнетизма@@@Lagging and anticipating greene functions in the theory of ferromagnetism , 1959 .

[14]  D. Dubois,et al.  ELECTRON INTERACTIONS. PART I. FIELD THEORY OF A DEGENERATE ELECTRON GAS , 1959 .

[15]  P. Anderson Random-Phase Approximation in the Theory of Superconductivity , 1958 .

[16]  A. Klein,et al.  PERTURBATION THEORY FOR AN INFINITE MEDIUM OF FERMIONS , 1958 .

[17]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[18]  D. Pines A Collective Description of-Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas , 1953 .