Quantum Voronoi diagrams and Holevo channel capacity for 1-qubit quantum states

In this paper, we first introduce a smooth parametric family of Bregman-Csiszar quantum entropies including the von Neumann and Burg quantum entropies. We then describe the dualistic nature of Voronoi diagrams for 1-qubit quantum states inside the 3D Bloch ball representation. We show that these diagrams can be computed as Bregman Voronoi diagrams for the corresponding Bregman generator acting on Hermitian density matrices. This implies that these dual diagrams can be derived from power diagrams of balls in the Laguerre geometry, and allows one to prove by equivalence that the von Neumann quantum Voronoi diagram on the degenerated Bloch sphere of pure quantum states coincides with the ordinary Euclidean Voronoi diagram, bypassing the fact that the quantum divergence is not defined there. We then show how to compute the Holevo channel capacity of 1-qubit quantum states, and provide a practical approximation algorithm based on Bregman core-sets. Finally, we define the quantum sided centroids that yield practical upper bounds on the Holevo capacity in linear time.

[1]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[2]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[3]  Frank Nielsen,et al.  Bregman Voronoi Diagrams , 2007, Discret. Comput. Geom..

[4]  Frank Nielsen,et al.  On the Centroids of Symmetrized Bregman Divergences , 2007, ArXiv.

[5]  D. Petz,et al.  Geometries of quantum states , 1996 .

[6]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[7]  Frank Nielsen,et al.  On approximating the smallest enclosing Bregman Balls , 2006, SCG '06.

[8]  C. R. Rao,et al.  On the convexity of some divergence measures based on entropy functions , 1982, IEEE Trans. Inf. Theory.

[9]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..

[10]  Hiroshi Imai,et al.  Voronoi Diagrams for Pure 1-qubit Quantum States , 2006 .

[11]  Rina Panigrahy,et al.  Minimum Enclosing Polytope in High Dimensions , 2004, ArXiv.

[12]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[13]  Hiroshi Imai,et al.  Error Analysis of a Numerical Calculation about One-qubit Quantum Channel Capacity , 2007, 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007).

[14]  Gunnar Rätsch,et al.  Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection , 2004, J. Mach. Learn. Res..

[15]  Baba C. Vemuri,et al.  Efficient Shape Indexing Using an Information Theoretic Representation , 2005, CIVR.

[16]  Inderjit S. Dhillon,et al.  Matrix Nearness Problems with Bregman Divergences , 2007, SIAM J. Matrix Anal. Appl..

[17]  Frank Nielsen,et al.  On the Smallest Enclosing Information Disk , 2008, CCCG.

[18]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[19]  Bruno Pelletier,et al.  Informative barycentres in statistics , 2005 .

[20]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[21]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[22]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.