Practical Guide to Ultrasound Beam Forming: Beam Pattern and Image Reconstruction Analysis

Starting from key ultrasound imaging features such as spatial and temporal resolution, contrast, penetration depth, array aperture, and field-of-view (FOV) size, the reader will be guided through the pros and cons of the main ultrasound beam-forming techniques. The technicalities and the rationality behind the different driving schemes and reconstruction modalities will be reviewed, highlighting the requirements for their implementation and their suitability for specific applications. Techniques such as multi-line acquisition (MLA), multi-line transmission (MLT), plane and diverging wave imaging, and synthetic aperture will be discussed, as well as more recent beam-forming modalities.

[1]  Dongwoon Hyun,et al.  Lesion Detectability in Diagnostic Ultrasound with Short-Lag Spatial Coherence Imaging , 2011, Ultrasonic imaging.

[2]  Peter A Lewin,et al.  Ultrasound Transducer Selection in Clinical Imaging Practice , 2013, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[3]  井上 良紀,et al.  流体力学用語集 非線形音響学(Nonlinear acoustics) , 1995 .

[4]  Piero Tortoli,et al.  Density-tapered spiral arrays for ultrasound 3-D imaging , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[5]  Piero Tortoli,et al.  Improved lateral resolution and contrast in ultrasound imaging using a sidelobe masking technique , 2014, 2014 IEEE International Ultrasonics Symposium.

[6]  Mickael Tanter,et al.  High-contrast ultrafast imaging of the heart , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[7]  M. Fink,et al.  Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  Piero Tortoli,et al.  Multi-Transmit Beam Forming for Fast Cardiac Imaging—Experimental Validation and In Vivo Application , 2014, IEEE Transactions on Medical Imaging.

[9]  B. Witek,et al.  Modular & scalable ultrasound platform with GPU processing , 2012, 2012 IEEE International Ultrasonics Symposium.

[10]  Piero Tortoli,et al.  ULA-OP 256: A 256-Channel Open Scanner for Development and Real-Time Implementation of New Ultrasound Methods , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[11]  F L Thurstone,et al.  Cardiac Imaging Using a Phased Array Ultrasound System: II. Clinical Technique and Application , 1976, Circulation.

[12]  Thomas L. Szabo,et al.  Diagnostic Ultrasound Imaging: Inside Out , 2004 .

[13]  J. Jensen,et al.  Multielement synthetic transmit aperture imaging using temporal encoding , 2003, IEEE Transactions on Medical Imaging.

[14]  Junying Chen,et al.  Medical Ultrasound Imaging: To GPU or Not to GPU? , 2011, IEEE Micro.

[15]  H. Ermert,et al.  Ultrasound synthetic aperture imaging: monostatic approach , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  G. E. Trahey,et al.  Short-lag spatial coherence of backscattered echoes: imaging characteristics , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  F. Gran,et al.  Frequency division transmission imaging and synthetic aperture reconstruction , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  M. O'Donnell,et al.  Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  A. Dallai,et al.  ULA-OP: an advanced open platform for ultrasound research , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  Dongwoon Hyun,et al.  Coherence beamforming and its applications to the difficult-to-image patient , 2017, 2017 IEEE International Ultrasonics Symposium (IUS).

[21]  Saleem A. Kassam,et al.  Side‐lobe reduction in the ring array pattern for synthetic aperture imaging of coherent sources , 1983 .

[22]  Hiroshi Kanai,et al.  High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming , 2011, Journal of Medical Ultrasonics.

[23]  2D Transient Elastography , 2002 .

[24]  S.W. Smith,et al.  High-speed ultrasound volumetric imaging system. II. Parallel processing and image display , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  Marc D Weinshenker,et al.  Explososcan: a parallel processing technique for high speed ultrasound imaging with linear phased arrays. , 1984 .

[26]  S. I. Nikolov,et al.  SARUS: A synthetic aperture real-time ultrasound system , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[27]  Piero Tortoli,et al.  Multi-focus tissue harmonic images obtained with parallel transmit beamforming by means of orthogonal frequency division multiplexing , 2014, 2015 IEEE International Ultrasonics Symposium (IUS).

[28]  S.W. Smith,et al.  High-speed ultrasound volumetric imaging system. I. Transducer design and beam steering , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  Svetoslav Ivanov Nikolov,et al.  Synthetic aperture tissue and flow ultrasound imaging , 2002 .

[30]  M. Fink,et al.  Supersonic shear imaging: a new technique for soft tissue elasticity mapping , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  B. Y. S. Yiu,et al.  GPU-based beamformer: Fast realization of plane wave compounding and synthetic aperture imaging , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[32]  F L Thurstone,et al.  Cardiac Imaging Using a Phased Array Ultrasound System: I. System Design , 1976, Circulation.

[33]  Jan D'hooge,et al.  Multi-transmit beam forming for fast cardiac imaging-a simulation study , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[34]  L. Demi,et al.  Parallel transmit beamforming using orthogonal frequency division multiplexing applied to harmonic Imaging-A feasibility study , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[35]  L Libertario Demi,et al.  Modeling nonlinear propagation of ultrasound through inhomogeneous biomedical media , 2013 .

[36]  Stephen J. Norton,et al.  Acoustical holography with an annular aperture , 1982 .

[37]  H. Torp,et al.  Multi-line transmission in 3-D with reduced crosstalk artifacts: a proof of concept study , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[38]  Alessandro Ramalli,et al.  In vitro and in vivo tissue harmonic images obtained with parallel transmit beamforming by means of orthogonal frequency division multiplexing , 2015 .

[39]  B T Cox,et al.  k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. , 2010, Journal of biomedical optics.

[40]  J A Jensen,et al.  Potential of coded excitation in medical ultrasound imaging. , 2000, Ultrasonics.

[41]  Piero Tortoli,et al.  Implementation of parallel transmit beamforming using orthogonal frequency division multiplexing-achievable resolution and interbeam interference , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[42]  Michael L. Oelze,et al.  Improving lateral resolution in ultrasonic Imaging by utilizing nulls in the beam pattern , 2015, 2015 IEEE International Ultrasonics Symposium (IUS).

[43]  Jørgen Arendt Jensen,et al.  Synthetic aperture ultrasound imaging. , 2006, Ultrasonics.

[44]  Jonathan R Reeg Null subtraction imaging technique for biomedical ultrasound imaging , 2016 .

[45]  Eigil Samset,et al.  Safety of Multi-Line Transmit beam forming for fast cardiac imaging - a simulation study , 2014, 2014 IEEE International Ultrasonics Symposium.

[46]  M. O'Donnell,et al.  Subaperture processing for ultrasonic imaging , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[47]  Mickael Tanter,et al.  Sonic boom in soft materials: The elastic Cerenkov effect , 2004 .

[48]  David Romero-Laorden,et al.  An ultrasonic imaging system based on a new SAFT approach and a GPU beamformer , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[49]  Maja Cikes,et al.  Ultrafast cardiac ultrasound imaging: technical principles, applications, and clinical benefits. , 2014, JACC. Cardiovascular imaging.

[50]  J.A. Jensen,et al.  Use of modulated excitation signals in medical ultrasound. Part I: basic concepts and expected benefits , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[51]  M. Fink,et al.  Shear modulus imaging with 2-D transient elastography , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[52]  J.A. Jensen,et al.  Ultrasound research scanner for real-time synthetic aperture data acquisition , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[53]  Mickael Tanter,et al.  Ultrafast imaging in biomedical ultrasound , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[54]  E. Samset,et al.  Diverging Wave Volumetric Imaging Using Subaperture Beamforming , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[55]  M. Fink,et al.  Time-Resolved Pulsed Elastography with Ultrafast Ultrasonic Imaging , 1999, Ultrasonic imaging.

[56]  C.E. Burckhardt,et al.  An Experimental 2 MHz Synthetic Aperture Sonar System Intended for Medical Use , 1974, IEEE Transactions on Sonics and Ultrasonics.

[57]  M. O'Donnell,et al.  Synthetic aperture imaging for small scale systems , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[58]  Andreas Austeng,et al.  Correspondence - Multi-line transmission in medical imaging using the second-harmonic signal , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[59]  Brett Byram,et al.  Deep neural networks for ultrasound beamforming , 2018, 2017 IEEE International Ultrasonics Symposium (IUS).

[60]  Alfred C. H. Yu,et al.  Multi-channel pre-beamformed data acquisition system for research on advanced ultrasound imaging methods , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.