On acceptance conditions for membrane systems: characterisations of L and NL

In this paper we investigate the affect of various acceptance conditions on recogniser membrane systems without dissolution. We demonstrate that two particular acceptance conditions (one easier to program, the other easier to prove correctness) both characterise the same complexity class, NL. We also find that by restricting the acceptance conditions we obtain a characterisation of L. We obtain these results by investigating the connectivity properties of dependency graphs that model membrane system computations.

[1]  Mario J. Pérez-Jiménez,et al.  Complexity classes in models of cellular computing with membranes , 2003, Natural Computing.

[2]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[3]  Niall Murphy,et al.  Active Membrane Systems Without Charges and Using Only Symmetric Elementary Division Characterise P , 2007, Workshop on Membrane Computing.

[4]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[5]  José L. Balcázar,et al.  Structural Complexity I , 1988, EATCS Monographs on Theoretical Computer Science Series.

[6]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[7]  Niall Murphy,et al.  A Characterisation of NL Using Membrane Systems without Charges and Dissolution , 2008, UC.

[8]  Stephen A. Cook,et al.  Problems Complete for Deterministic Logarithmic Space , 1987, J. Algorithms.

[9]  Gheorghe Paun P Systems with Active Membranes: Attacking NP-Complete Problems , 2001, J. Autom. Lang. Comb..

[10]  Alfonso Rodríguez-Patón,et al.  Membrane computing and complexity theory: A characterization of PSPACE , 2007, J. Comput. Syst. Sci..

[11]  Giancarlo Mauri,et al.  Solving NP-Complete Problems Using P Systems with Active Membranes , 2000, UMC.

[12]  N. Immerman,et al.  On uniformity within NC 1 . , 1988 .

[13]  Mario J. Pérez-Jiménez,et al.  On the Power of Dissolution in P Systems with Active Membranes , 2005, Workshop on Membrane Computing.

[14]  Róbert Szelepcsényi The moethod of focing for nondeterministic automata , 1987, Bull. EATCS.

[15]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..

[16]  Agustín Riscos-Núñez,et al.  Computational efficiency of dissolution rules in membrane systems , 2006, Int. J. Comput. Math..