Partitioning Search Spaces of a Randomized Search

This paper studies the following question: given an instance of the propositional satisfiability problem, a randomized satisfiability solver, and a cluster of n computers, what is the best way to use the computers to solve the instance? Two approaches, simple distribution and search space partitioning as well as their combinations are investigated both analytically and empirically. It is shown that the results depend heavily on the type of the problem (unsatisfiable, satisfiable with few solutions, and satisfiable with many solutions) as well as on how good the search space partitioning function is. In addition, the behavior of a real search space partitioning function is evaluated in the same framework. The results suggest that in practice one should combine the simple distribution and search space partitioning approaches.

[1]  Sartaj Sahni,et al.  Anomalies in Parallel Branch-and-Bound Algorithms , 1984 .

[2]  Oliver Vornberger,et al.  Superlinear Speedup for Parallel Backtracking , 1987, ICS.

[3]  Vipin Kumar,et al.  Superlinear Speedup in Parallel State-Space Search , 1988, FSTTCS.

[4]  Dharma P. Agrawal,et al.  A Randomized Parallel Backtracking Algorithm , 1988, IEEE Trans. Computers.

[5]  Benjamin W. Wah,et al.  Computational Efficiency of Parallel Combinatorial OR-Tree Searches , 1990, IEEE Trans. Software Eng..

[6]  Mike Reeve,et al.  Why and How in the ElipSys OR-parallel CLP System , 1993, PARLE.

[7]  Vipin Kumar,et al.  On the Efficiency of Parallel Backtracking , 1993, IEEE Trans. Parallel Distributed Syst..

[8]  David Zuckerman,et al.  Optimal speedup of Las Vegas algorithms , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[9]  Wolfgang Ertel,et al.  Optimal parallelization of Las Vegas algorithms , 1993, Forschungsberichte, TU Munich.

[10]  Steven David Prestwich,et al.  Improved Branch and Bound in Constraint Logic Programming , 1995, CP.

[11]  Maria Paola Bonacina,et al.  PSATO: a Distributed Propositional Prover and its Application to Quasigroup Problems , 1996, J. Symb. Comput..

[12]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[13]  Vipin Kumar,et al.  State of the Art in Parallel Search Techniques for Discrete Optimization Problems , 1999, IEEE Trans. Knowl. Data Eng..

[14]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[15]  Giovanni Resta,et al.  Nagging: A scalable fault-tolerant paradigm for distributed search , 2002, Artif. Intell..

[16]  Wolfgang Küchlin,et al.  Parallel propositional satisfiability checking with distributed dynamic learning , 2003, Parallel Comput..

[17]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[18]  Armando Tacchella,et al.  Theory and Applications of Satisfiability Testing: 6th International Conference, Sat 2003, Santa Margherita Ligure, Italy, May 5-8 2003: Selected Revised Papers (Lecture Notes in Computer Science, 2919) , 2004 .

[19]  Bart Selman,et al.  Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems , 2000, Journal of Automated Reasoning.

[20]  Gil Utard,et al.  A Parallelization Scheme Based on Work Stealing for a Class of SAT Solvers , 2005, Journal of Automated Reasoning.

[21]  Ewald Speckenmeyer,et al.  A fast parallel SAT-solver — efficient workload balancing , 2005, Annals of Mathematics and Artificial Intelligence.

[22]  Ilkka Niemelä,et al.  A Distribution Method for Solving SAT in Grids , 2006, SAT.

[23]  Katsumi Inoue,et al.  A competitive and cooperative approach to propositional satisfiability , 2006, Discret. Appl. Math..

[24]  Dharma P. Agrawal,et al.  A randomized parallel branch-and-bound algorithm , 1989, International Journal of Parallel Programming.

[25]  Richard Wolski,et al.  GridSAT: a system for solving satisfiability problems using a computational grid , 2006, Parallel Comput..

[26]  Peter J. Stuckey,et al.  PMiniSat - A parallelization of MiniSat 2.0 , 2008 .

[27]  Ilkka Niemelä,et al.  Strategies for Solving SAT in Grids by Randomized Search , 2008, AISC/MKM/Calculemus.

[28]  Kazunori Ueda,et al.  c-sat: A Parallel SAT Solver for Clusters , 2009, SAT.

[29]  Lucas Bordeaux,et al.  Experiments with Massively Parallel Constraint Solving , 2009, IJCAI.

[30]  Bernd Becker,et al.  PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing , 2009, SAT.

[31]  A. Hyvärinen Hyvärinen Approaches to Grid-Based SAT Solving , 2009 .

[32]  Antti E. J. Hyvärinen Approaches to grid-based SAT solving , 2009 .

[33]  Paulo F. Flores,et al.  PMSat: a parallel version of MiniSAT , 2008, J. Satisf. Boolean Model. Comput..

[34]  Ilkka Niemelä,et al.  Incorporating Clause Learning in Grid-Based Randomized SAT Solving , 2009, J. Satisf. Boolean Model. Comput..

[35]  Gilles Dequen,et al.  Toward Easy Parallel SAT Solving , 2009, 2009 21st IEEE International Conference on Tools with Artificial Intelligence.

[36]  Bernd Becker,et al.  PaMiraXT: Parallel SAT Solving with Threads and Message Passing , 2009, J. Satisf. Boolean Model. Comput..

[37]  Samuel Kaski,et al.  Two-Way Grouping by One-Way Topic Models , 2009, IDA.

[38]  Lakhdar Sais,et al.  ManySAT: a Parallel SAT Solver , 2009, J. Satisf. Boolean Model. Comput..

[39]  Roland Kindermann Testing a Java Card applet using the LIME Interface Test Bench : a case study , 2009 .

[40]  Lakhdar Sais,et al.  Control-Based Clause Sharing in Parallel SAT Solving , 2009, IJCAI.

[41]  Jori Dubrovin Checking Bounded Reachability in Asynchronous Systems by Symbolic Event Tracing , 2010, VMCAI.

[42]  Ilkka Niemelä,et al.  Partitioning SAT Instances for Distributed Solving , 2010, LPAR.

[43]  Sami Hanhijärvi Multiple Hypothesis Testing in Pattern Discovery , 2011, Discovery Science.

[44]  Ilkka Niemelä,et al.  Partitioning Search Spaces of a Randomized Search , 2011, Fundam. Informaticae.