Intelligent Tracking Control of a Free-Flying Flexible Space Robot Manipulator

The end effector of a free-flying flexible space robot is tracked along a planar trajectory using inverse flexible dynamics control (IFDC) and fuzzy logic system adaptive control (FLSAC) strategies for comparison. The robot is required to track its end effector between two points in two-dimensional space while maintaining the orbiting rigid spacecraft at a fixed position in space. Simulation results show the IFDC strategy produces a trajectory that fails to reach its commanded final position by a large margin in both coordinates. The FLSAC strategy produces a more accurate trajectory closer to the commanded final position in both coordinates but at a greater computational time burden. Sporadic high magnitude driving torque “spikes” are experienced similar to the “bursting phenomenon” encountered with adaptive control systems. Spacecraft reactive translation and attitude disturbance is minimal in each case but slightly greater for IFDC. Notation

[1]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[2]  A. Ellery An Introduction to Space Robotics , 2000 .

[3]  Richard W. Longman,et al.  Satellite-Mounted Robot Manipulators — New Kinematics and Reaction Moment Compensation , 1987 .

[4]  W. Thomson Theory of vibration with applications , 1965 .

[5]  Yasuhiro Masutani,et al.  Sensory feedback control for space manipulators , 1989 .

[6]  Steven Dubowsky,et al.  Coordinated manipulator/spacecraft motion control for space robotic systems , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[7]  S. K. Ghosh,et al.  Theory of vibration with applications, (2nd edition): by W.T. Thomson, George Allen and Unwin, London, 1983. ISBN 0-04-620012-6, xvi + 493 pages, illustrated, paperback £ 9.95 , 1984 .

[8]  Wayne J. Book,et al.  Structural flexibility of motion systems in the space environment , 1993, IEEE Trans. Robotics Autom..

[9]  Jerzy Z. Sasiadek,et al.  Dynamic Modeling and Adaptive Control of a Single-Link Flexible Manipulator , 1989 .

[10]  Kazuya Yoshida,et al.  Resolved motion rate control of space manipulators with generalized Jacobian matrix , 1989, IEEE Trans. Robotics Autom..

[11]  Subir Kumar Saha,et al.  Modeling and simulation of space robots , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[12]  Heung-Yeung Shum,et al.  Adaptive control of space robot system with an attitude controlled base , 1992 .

[13]  L. Meirovitch,et al.  Control of a flexible space robot executing a docking maneuver , 1995 .

[14]  J.Z. Sasiadek,et al.  Fuzzy control of a flexible link manipulator , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[15]  Darrell K. Root,et al.  Space Robotics: Dynamics and Control , 1996 .

[16]  Liang-Boon Wee,et al.  Adaptive control of space-based robot manipulators , 1991, IEEE Trans. Robotics Autom..

[17]  Brian D. O. Anderson,et al.  Failures of adaptive control theory and their resolution , 2005, Commun. Inf. Syst..

[18]  Anthony Green,et al.  Adaptive Control of a Flexible Robot Using Fuzzy Logic , 2005 .

[19]  Steven Dubowsky,et al.  The kinematics, dynamics, and control of free-flying and free-floating space robotic systems , 1993, IEEE Trans. Robotics Autom..

[20]  L. Meirovitch,et al.  Maneuvering and control of flexible space robots , 1994 .

[21]  Kazuya Yoshida,et al.  Analysis of a redundant free-flying spacecraft/manipulator system , 1992, IEEE Trans. Robotics Autom..

[22]  R. H. Cannon,et al.  An extended operational-space control algorithm for satellite manipulators , 1990 .

[23]  Richard Longman Attituded tumbling due to flexibility in satellite mounted robots , 1988 .

[24]  L. Meirovitch,et al.  Trajectory and control optimization for flexible space robots , 1995 .

[25]  Howard Kaufman,et al.  Direct Adaptive Control Algorithms , 1998 .

[26]  Kazuya Yoshida,et al.  Control of Space Manipulators with Generalized Jacobian Matrix , 1993 .