Fading Evaluation in Standardized 5G Millimeter-Wave Band

Recent standardization of portions of the millimeter-wave (mm-wave) band for fifth-generation (5G) operation has called for further research on how short-term fading behaves in that unexplored part of the spectrum. With such a target, this paper reports on a thorough measurement campaign conducted in an indoor environment characterized by rich-multipath scattering, a part of a modern building, with floor and ceiling constructed of reinforced concrete over steel plates with wood and plasterboard-paneled walls. Particularly, measurements have been performed in a variety of scenarios, under line-of-sight (LoS) and non-line-of-sight (nLoS) conditions, for a wide range of frequencies, namely from 25 to 40 GHz- a span of 15 GHz- therefore, including 26, 28 and 39 GHz. First and second order statistics of representative fading models, namely Rayleigh, Rice, Nakagami, folded normal, <inline-formula> <tex-math notation="LaTeX">${\alpha } $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu } $ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">${\eta } $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu }$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">${\kappa } $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu } $ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">${\alpha } $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\eta } $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\kappa } $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu } $ </tex-math></inline-formula> have been investigated. The metrics used in the analysis were the normalized mean square error (NMSE), the Kolmogorov-Smirnov (KS), and the Akaike information criterion (AIC). Additionally, the study of the <inline-formula> <tex-math notation="LaTeX">${\kappa } $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu } $ </tex-math></inline-formula> model is advanced, in which new, exact, simple closed-form expressions for probability density function, cumulative distribution function, and level crossing rate are derived for some particular cases, namely for <inline-formula> <tex-math notation="LaTeX">${\mu = n+ 1/2}$ </tex-math></inline-formula> in which <inline-formula> <tex-math notation="LaTeX">${n\in {{\mathbb {N}}}}$ </tex-math></inline-formula>.

[1]  Theodore S. Rappaport,et al.  Spatial and temporal characteristics of 60-GHz indoor channels , 2002, IEEE J. Sel. Areas Commun..

[2]  D.M. Matic,et al.  Indoor and outdoor frequency measurements for MM-waves in the range of 60 GHz , 1998, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151).

[3]  Peter F. M. Smulders,et al.  Statistical Characterization of 60-GHz Indoor Radio Channels , 2009, IEEE Transactions on Antennas and Propagation.

[4]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[5]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[6]  Lorenzo Rubio,et al.  The Folded Normal Distribution: A New Model for the Small-Scale Fading in Line-of-Sight (LOS) Condition , 2019, IEEE Access.

[7]  Zhinong Ying,et al.  Simulations and measurements of 15 and 28 GHz indoor channels with different array configurations , 2017, 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT).

[8]  R. S. Cole,et al.  An experimental study of the propagation of 55 GHz millimeter waves in an urban mobile radio environment , 1994 .

[9]  Katsuyuki Haneda,et al.  Indoor short-range radio propagation measurements at 60 and 70 GHz , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[10]  Lorenzo Rubio,et al.  Higher Order Statistics in a mmWave Propagation Environment , 2019, IEEE Access.

[11]  Theodore S. Rappaport,et al.  Millimeter Wave Channel Modeling and Cellular Capacity Evaluation , 2013, IEEE Journal on Selected Areas in Communications.

[12]  Theodore S. Rappaport,et al.  In-building wideband partition loss measurements at 2.5 and 60 GHz , 2004, IEEE Transactions on Wireless Communications.

[13]  Thomas Zwick,et al.  Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel , 2005, IEEE Transactions on Vehicular Technology.

[14]  J. Reig,et al.  Fading Evaluation in the 60GHz Band in Line-of-Sight Conditions , 2014 .

[15]  Lorenzo Rubio,et al.  Millimeter Wave MISO-OFDM Transmissions in an Intra-Wagon Environment , 2021, IEEE Transactions on Intelligent Transportation Systems.

[16]  Jose-Maria Molina-Garcia-Pardo,et al.  Contribution to the Channel Path Loss and Time-Dispersion Characterization in an Office Environment at 26 GHz , 2019 .

[17]  Lujain Dabouba,et al.  Millimeter Wave Mobile Communication for 5 G Cellular , 2017 .

[18]  Theodore S. Rappaport,et al.  Proposal on Millimeter-Wave Channel Modeling for 5G Cellular System , 2016, IEEE Journal of Selected Topics in Signal Processing.

[19]  Theodore S. Rappaport,et al.  28 GHz Millimeter-Wave Ultrawideband Small-Scale Fading Models in Wireless Channels , 2015, 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).

[20]  Julien Sarrazin,et al.  Near-Body Shadowing Analysis at 60 GHz , 2015, IEEE Transactions on Antennas and Propagation.

[21]  Young-Keun Yoon,et al.  Measurements of path loss in MM-wave for indoor environments , 2009, 2009 Asia Pacific Microwave Conference.

[22]  P. Vainikainen,et al.  Statistical Channel Models for 60 GHz Radio Propagation in Hospital Environments , 2012, IEEE Transactions on Antennas and Propagation.

[23]  Lei Tian,et al.  Analysis of Millimeter-Wave Channel Characteristics Based on Channel Measurements in Indoor Environments at 39 GHz , 2019, 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP).

[24]  Moon-Soon Choi,et al.  Statistical Characteristics of 60 GHz Wideband Indoor Propagation Channel , 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications.

[25]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[26]  Lorenzo Rubio,et al.  Fading Evaluation in the mm-Wave Band , 2019, IEEE Transactions on Communications.