The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections.

[1]  Y. Belkaid,et al.  Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: An adaptive response induced by the fly? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Ribeiro,et al.  The salivary adenosine deaminase from the sand fly Lutzomyia longipalpis. , 2000, Experimental parasitology.

[3]  R. Charlab,et al.  The salivary 5′-nucleotidase/phosphodiesterase of the hematophagus sand lutzomyia fly, Lutzomyia longipalpis , 2000 .

[4]  J. Ribeiro,et al.  Salivary amylase activity of the phlebotomine sand fly, Lutzomyia longipalpis. , 2000, Insect biochemistry and molecular biology.

[5]  C. Szabó,et al.  Inosine Inhibits Inflammatory Cytokine Production by a Posttranscriptional Mechanism and Protects Against Endotoxin-Induced Shock1 , 2000, The Journal of Immunology.

[6]  G. Chrousos,et al.  Ligand-Activation of the Adenosine A2a Receptors Inhibits IL-12 Production by Human Monocytes , 2000, The Journal of Immunology.

[7]  J. Ribeiro,et al.  Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Satoskar,et al.  Leishmania species: models of intracellular parasitism. , 1999, Journal of cell science.

[9]  Z. Zídek Adenosine - cyclic AMP pathways and cytokine expression. , 1999, European cytokine network.

[10]  S. Denda,et al.  Functional Characterization of Structural Alterations in the Sequence of the Vasodilatory Peptide Maxadilan Yields a Pituitary Adenylate Cyclase-activating Peptide Type 1 Receptor-specific Antagonist* , 1999, The Journal of Biological Chemistry.

[11]  S. Wikel Tick modulation of host immunity: an important factor in pathogen transmission. , 1999, International journal for parasitology.

[12]  J. Ribeiro,et al.  Salivary glands of the sand fly Phlebotomus papatasi contain pharmacologically active amounts of adenosine and 5'-AMP. , 1999, The Journal of experimental biology.

[13]  A. James,et al.  Variation in the salivary peptide, maxadilan, from species in the Lutzomyia longipalpis complex , 1999, Insect molecular biology.

[14]  S. Wikel MODULATION OF THE HOST IMMUNE SYSTEM BY ECTOPARASITIC ARTHROPODS , 1999 .

[15]  W. Born,et al.  Maxadilan interacts with receptors for pituitary adenylyl cyclase activating peptide in human SH-SY5Y and SK-N-MC neuroblastoma cells , 1999, Neuropeptides.

[16]  M. Horton,et al.  Hyaluronan Fragments Synergize with Interferon-γ to Induce the C-X-C Chemokines Mig and Interferon-inducible Protein-10 in Mouse Macrophages* , 1998, The Journal of Biological Chemistry.

[17]  Y. Belkaid,et al.  Development of a Natural Model of Cutaneous Leishmaniasis: Powerful Effects of  Vector Saliva and Saliva Preexposure on the Long-Term Outcome of Leishmania major Infection in the Mouse Ear Dermis , 1998, The Journal of experimental medicine.

[18]  M. Mbow,et al.  Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. , 1998, Journal of immunology.

[19]  E. Vizi,et al.  An agonist of adenosine A3 receptors decreases interleukin-12 and interferon-gamma production and prevents lethality in endotoxemic mice. , 1998, European journal of pharmacology.

[20]  A. Satoskar,et al.  The PACAP‐type I receptor agonist maxadilan from sand fly saliva protects mice against lethal endotoxemia by a mechanism partially dependent on IL‐10 , 1998, European journal of immunology.

[21]  R. Titus Salivary gland lysate from the sand fly Lutzomyia longipalpis suppresses the immune response of mice to sheep red blood cells in vivo and concanavalin A in vitro. , 1998, Experimental parasitology.

[22]  A. Warburg,et al.  Phlebotomus papatasi Saliva Inhibits Protein Phosphatase Activity and Nitric Oxide Production by Murine Macrophages , 1998, Infection and Immunity.

[23]  M. Horton,et al.  Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-gamma in mouse macrophages. , 1998, Journal of immunology.

[24]  M. Soares,et al.  The vasoactive peptide maxadilan from sand fly saliva inhibits TNF-alpha and induces IL-6 by mouse macrophages through interaction with the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor. , 1998, Journal of immunology.

[25]  R. Titus,et al.  Histologic characterization of experimental cutaneous leishmaniasis in mice infected with Leishmania braziliensis in the presence or absence of sand fly vector salivary gland lysate. , 1998, The Journal of parasitology.

[26]  M. Horton,et al.  Hyaluronan Fragments Induce Nitric-oxide Synthase in Murine Macrophages through a Nuclear Factor κB-dependent Mechanism* , 1997, The Journal of Biological Chemistry.

[27]  E. Lerner,et al.  Maxadilan, the Vasodilator from Sand Flies, Is a Specific Pituitary Adenylate Cyclase Activating Peptide Type I Receptor Agonist* , 1997, The Journal of Biological Chemistry.

[28]  E. Lerner,et al.  Receptors for the vasodilator maxadilan are expressed on selected neural crest and smooth muscle-derived cells. , 1996, Insect biochemistry and molecular biology.

[29]  R. Titus,et al.  Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice , 1996, Infection and immunity.

[30]  E. Vizi,et al.  Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. , 1996, Journal of immunology.

[31]  M. Burdick,et al.  Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. , 1996, The Journal of clinical investigation.

[32]  J. Loscalzo,et al.  Vasodilatory properties of recombinant maxadilan. , 1996, The American journal of physiology.

[33]  F. Liew,et al.  Immunology of murine leishmaniasis. , 1996, Clinics in dermatology.

[34]  A. James,et al.  Salivary gland anticoagulants in culicine and anopheline mosquitoes (Diptera:Culicidae). , 1996, Journal of medical entomology.

[35]  R. Granstein,et al.  Immunomodulatory properties of maxadilan, the vasodilator peptide from sand fly salivary gland extracts. , 1996, The American journal of tropical medicine and hygiene.

[36]  O. Moine,et al.  Adenosine enhances IL-10 secretion by human monocytes. , 1996, Journal of immunology.

[37]  R. Titus,et al.  Sand fly vector saliva selectively modulates macrophage functions that inhibit killing of Leishmania major and nitric oxide production. , 1995, Journal of immunology.

[38]  J. Githure,et al.  The chemotactic effect of Phlebotomus duboscqi (Diptera: Psychodidae) salivary gland lysates to murine monocytes. , 1995, Acta tropica.

[39]  J. Ribeiro,et al.  Blood-feeding arthropods: live syringes or invertebrate pharmacologists? , 1995, Infectious agents and disease.

[40]  R. Tesh,et al.  Leishmania amazonensis: sensitivity of different promastigote morphotypes to salivary gland homogenates of the sand fly Lutzomyia longipalpis. , 1995, Experimental parasitology.

[41]  J. Loscalzo,et al.  Vasorelaxant and second messenger effects of maxadilan. , 1995, The Journal of pharmacology and experimental therapeutics.

[42]  S. Hourani,et al.  Characterization of adenosine receptors in the rat isolated aorta. , 1994, General pharmacology.

[43]  R. Titus,et al.  Saliva of Lutzomyia longipalpis sibling species differs in its composition and capacity to enhance leishmaniasis. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  D. Champagne The role of salivary vasodilators in bloodfeeding and parasite transmission. , 1994, Parasitology today.

[45]  R. Titus,et al.  Salivary gland material from the sand fly Lutzomyia longipalpis has an inhibitory effect on macrophage function in vitro , 1993, Parasite immunology.

[46]  J. Ribeiro,et al.  Cytostatic effect of Lutzomyia longipalpis salivary gland homogenates on Leishmania parasites. , 1993, The American journal of tropical medicine and hygiene.

[47]  C. Shoemaker,et al.  Maxadilan. Cloning and functional expression of the gene encoding this potent vasodilator peptide. , 1992, The Journal of biological chemistry.

[48]  M. Lerner,et al.  Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. , 1991, The Journal of biological chemistry.

[49]  J. Ribeiro,et al.  Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice , 1991, Infection and immunity.

[50]  R. Tesh,et al.  A mouse model of Leishmania braziliensis braziliensis infection produced by coinjection with sand fly saliva , 1991, The Journal of experimental medicine.

[51]  R. Titus,et al.  The role of vector saliva in transmission of arthropod-borne disease. , 1990, Parasitology today.

[52]  L. Ryan Multiple forced feeding of individual sandflies. , 1989, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[53]  J. Ribeiro,et al.  Vector saliva and its role in parasite transmission. , 1989, Experimental parasitology.

[54]  R. Titus,et al.  Peptides encoded by the calcitonin gene inhibit macrophage function. , 1989, Journal of immunology.

[55]  R. Tesh,et al.  A novel vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. , 1989, Science.

[56]  R. Tesh,et al.  Salivary apyrase activity of some old world phlebotomine sand flies , 1989 .

[57]  M. Collis,et al.  The vasodilator role of adenosine. , 1989, Pharmacology & therapeutics.

[58]  R. Titus,et al.  Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. , 1988, Science.

[59]  J. Ribeiro Vector salivation and parasite transmission. , 1987, Memorias do Instituto Oswaldo Cruz.

[60]  J. Ribeiro Role of saliva in blood-feeding by arthropods. , 1987, Annual review of entomology.

[61]  Y. Schlein,et al.  The effect of post-bloodmeal nutrition of Phlebotomus papatasi on the transmission of Leishmania major. , 1986, The American journal of tropical medicine and hygiene.

[62]  A. Spielman,et al.  Blood-finding strategy of a capillary-feeding sandfly, Lutzomyia longipalpis. , 1986, Comparative biochemistry and physiology. A, Comparative physiology.

[63]  R. Beach,et al.  Modification of sand fly biting behavior by Leishmania leads to increased parasite transmission. , 1985, The American journal of tropical medicine and hygiene.

[64]  Krampitz He [The Elba triad: harara, light dermatoses, leishmaniasis. The ecological background]. , 1981 .

[65]  S. Wikel The induction of host resistance to tick infestation with a salivary gland antigen. , 1981, The American journal of tropical medicine and hygiene.

[66]  P. Ready,et al.  Leishmania in phlebotomid sandflies - IV. The transmission of Leishmania mexicana amazonensis to hamsters by the bite of experimentally infected Lutzomyia longipalpis , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[67]  O. Theodor A study of the reaction to phlebotomus bites with some remarks on “Harara” , 1935 .

[68]  H. Shortt,et al.  The Method of Feeding of Phlebotomus argentipes with Relation to its Bearing on the Transmission of Kala-Azar. , 1928 .

[69]  O. Theodor,et al.  The Mouth Parts, Alimentary Tract, and Salivary Apparatus of the Female in Phlebotomus Papatasii , 1926 .