Refinement of Transition-Edge Sensor Dimensions for the X-Ray Integral Field Unit on ATHENA

At NASA Goddard Space Flight Center, we have previously demonstrated a kilo-pixel array of transition-edge sensor (TES) microcalorimeters capable of meeting the energy resolution requirements of the future X-ray Integral Field Unit (X-IFU) instrument that is being developed for the Advanced Telescope for High ENergy Astrophysics (ATHENA) observatory satellite. The TES design in this array was a square device with side length of 50 μm. Here, we describe studies of TES designs with small variations of the dimensions, exploring lengths, parallel to the current direction, ranging from 75 μm to 50 μm and widths, perpendicular to the current direction, ranging from 50 μm to 15 μm. We describe how these changes impact transition properties, thermal conductance and magnetic field sensitivity. In particular, we show that using a TES with a length of 50 μm and width of 30 μm may be a promising route to reduce the maximum time-derivative of the TES current in an X-ray pulse and reduce the sensitivity of the TES to magnetic field.

[1]  Paul van der Hulst,et al.  The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase , 2022, Experimental Astronomy.

[2]  H. Akamatsu,et al.  Performance of the SRON Ti/Au transition edge sensor x-ray calorimeters , 2022, Astronomical Telescopes + Instrumentation.

[3]  E. Denison,et al.  Performance of a Broad-Band, High-Resolution, Transition-Edge Sensor Spectrometer for X-ray Astrophysics , 2021, IEEE Transactions on Applied Superconductivity.

[4]  H. Akamatsu,et al.  Performance and uniformity of a kilo-pixel array of Ti/Au transition-edge sensor microcalorimeters. , 2021, Review of Scientific Instruments.

[5]  M. Eckart,et al.  Thermal fluctuation noise in Mo/Au superconducting transition-edge sensor microcalorimeters , 2019, Journal of Applied Physics.

[6]  M. Eckart,et al.  Effects of Normal Metal Features on Superconducting Transition-Edge Sensors , 2018 .

[7]  Simon R. Bandler,et al.  Performance of an X-ray Microcalorimeter with a 240 μm Absorber and a 50 μm TES Bilayer , 2018, Journal of Low Temperature Physics.

[8]  Simon R. Bandler,et al.  Uniformity of Kilo-Pixel Arrays of Transition-Edge Sensors for X-ray Astronomy , 2015, IEEE Transactions on Applied Superconductivity.

[9]  Simon R. Bandler,et al.  Implications of weak-link behavior on the performance of Mo/Au bilayer transition-edge sensors , 2013 .

[10]  B. Alpert,et al.  Optimization of the TES-Bias Circuit for a Multiplexed Microcalorimeter Array , 2012 .

[11]  Simon R. Bandler,et al.  Proximity effects and nonequilibrium superconductivity in transition-edge sensors , 2011, 1108.4632.

[12]  J. Sadleir Superconducting Transition-Edge Sensor Physics , 2011 .

[13]  S. Smith,et al.  Longitudinal proximity effects in superconducting transition-edge sensors. , 2009, Physical review letters.

[14]  Remco J. Wiegerink,et al.  Radiative ballistic phonon transport in silicon-nitride membranes at low temperatures , 2005 .

[15]  Mary J. Li,et al.  Impedance measurements and modeling of a transition-edge-sensor calorimeter , 2004 .

[16]  M. Eckart,et al.  Demonstration of a Full-Scale Brassboard TES Microcalorimeter Array for the Athena X-IFU , 2023, IEEE Transactions on Applied Superconductivity.

[17]  M. Eckart,et al.  Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions , 2023, IEEE Transactions on Applied Superconductivity.