CLOSURE OF MACROSCOPIC LAWS IN DISORDERED SPIN SYSTEMS : A TOY MODEL

We use a linear system of Langevin spins with disordered interactions as an exactly solvable toy model to investigate a procedure, recently proposed by Coolen and Sherrington, for closing the hierarchy of macroscopic order parameter equations in disordered spin systems. The closure procedure, based on the removal of microscopic memory effects, is shown to reproduce the correct equations for short times and in equilibrium. For intermediate time-scales the procedure does not lead to the exact equations, yet for homogeneous initial conditions succeeds in capturing the main characteristics of the flow in the order parameter plane. The procedure fails in terms of the long-term temporal dependence of the order parameters. For low-energy inhomogeneous initial conditions and near criticality (where zero modes appear) deviations in temporal behaviour are most apparent. For homogeneous initial conditions the impact of microscopic memory effects on the evolution of macroscopic order parameters in disordered spin systems appears to be mainly an overall slowing down.