Comparative Analysis of the Time Response of Electrorheological and Magnetorheological Dampers Using Nondimensional Parameters

Electrorheological (ER) and magnetorheological (MR) fluids show similar field-dependent rheological characteristics from a bulk fluid perspective. However, the implementation of ER and MR fluids in devices may require different strategies because of the inherent properties of ER and MR fluids such as density, viscosity and the magnitude of the yield stress. Therefore, in this study, we explore the characteristics of ER and MR fluid-based systems on the basis of dynamic range and time response in order to comprehensively understand each system. In doing so, a nondimensional analysis, based on parallel plate geometry, is used to characterize the field-dependent properties of ER and MR fluid-based dampers. Experimental tests are conducted for ER and MR dampers in order to validate our analysis.

[1]  Norman M. Wereley,et al.  Characterization and Analysis of Magnetorheological Damper Behavior Under Sinusoidal Loading , 2001 .

[2]  J. L. Sproston,et al.  A numerical simulation of electrorheological fluids in oscillatory compressive squeeze-flow , 1994 .

[3]  Norman M. Wereley,et al.  Double Adjustable Shock Absorbers Using Electrorheological Fluid , 1999 .

[4]  Seung-Bok Choi,et al.  Control characteristics of a continuously variable ER damper , 1998 .

[5]  Norman M. Wereley,et al.  Parametric analysis and testing of an electrorheological fluid damper , 1999, Smart Structures.

[6]  J. D. Carlson,et al.  COMMERCIAL MAGNETO-RHEOLOGICAL FLUID DEVICES , 1996 .

[7]  William A. Bullough,et al.  DYNAMICS OF AN ELECTRORHEOLOGICAL VALVE , 1996 .

[8]  R. Tao,et al.  Electrorheological fluids : mechanisms, properties, technology, and applications , 1994 .

[9]  Shoichiro Nakamura,et al.  Applied numerical methods in C , 1992 .

[10]  Seung-Bok Choi,et al.  Bingham and Response Characteristics of ER Fluids in Shear and Flow Modes , 2001 .

[11]  Jason E. Lindler,et al.  Biviscous damping behavior in electrorheological shock absorbers , 2004 .

[12]  Billie F. Spencer,et al.  Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction , 1996 .

[13]  Nicholas K. Petek An Electronically Controlled Shock Absorber Using Electrorheological Fluid , 1992 .

[14]  Norman M. Wereley,et al.  Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers , 1996 .

[15]  J. R. Cogdell Foundations of electric circuits , 1999 .

[16]  N. Wereley,et al.  Idealized Hysteresis Modeling of Electrorheological and Magnetorheological Dampers , 1998 .

[17]  R. A. Toupin. Introduction to Mechanics of Continua. By W ILLIAM P RAOER . Boston : Ginn and Go., 1961. 230 pp. $8.00. , 1962 .

[18]  Norman M. Wereley,et al.  Design of a magnetorheological automotive shock absorber , 2000, Smart Structures.

[19]  N. Wereley,et al.  Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models , 1998 .

[20]  Seung-Bok Choi,et al.  Comparison of damping force models for an electrorheological fluid damper , 2003 .

[21]  Henri P. Gavin,et al.  Electrorheological dampers for structural vibration suppression. , 1994 .