Monte-Carlo tree search and rapid action value estimation in computer Go

[1]  Ryan B. Hayward,et al.  MOHEX Wins Hex Tournament , 2012, J. Int. Comput. Games Assoc..

[2]  Joel Veness,et al.  Monte-Carlo Planning in Large POMDPs , 2010, NIPS.

[3]  Martin Müller,et al.  Fuego—An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search , 2010, IEEE Transactions on Computational Intelligence and AI in Games.

[4]  Shih-Chieh Huang,et al.  Monte-Carlo Simulation Balancing in Practice , 2010, Computers and Games.

[5]  Michèle Sebag,et al.  Feature Selection as a One-Player Game , 2010, ICML.

[6]  Thierry Moudenc,et al.  Introduction of a new paraphrase generation tool based on Monte-Carlo sampling , 2009, ACL.

[7]  Alan Fern,et al.  UCT for Tactical Assault Planning in Real-Time Strategy Games , 2009, IJCAI.

[8]  Gerald Tesauro,et al.  Monte-Carlo simulation balancing , 2009, ICML '09.

[9]  Mark H. M. Winands,et al.  Evaluation Function Based Monte-Carlo LOA , 2009, ACG.

[10]  Olivier Teytaud,et al.  Creating an Upper-Confidence-Tree Program for Havannah , 2009, ACG.

[11]  David Silver,et al.  Reinforcement learning and simulation-based search in computer go , 2009 .

[12]  David Silver,et al.  Reinforcement Learning and Simulation Based Search in the Game of Go , 2009 .

[13]  H. Jaap van den Herik,et al.  Progressive Strategies for Monte-Carlo Tree Search , 2008 .

[14]  Richard J. Lorentz Amazons Discover Monte-Carlo , 2008, Computers and Games.

[15]  Nathan R. Sturtevant,et al.  An Analysis of UCT in Multi-Player Games , 2008, J. Int. Comput. Games Assoc..

[16]  David Silver,et al.  Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008) Achieving Master Level Play in 9 × 9 Computer Go , 2022 .

[17]  Yngvi Björnsson,et al.  Simulation-Based Approach to General Game Playing , 2008, AAAI.

[18]  Richard S. Sutton,et al.  Sample-based learning and search with permanent and transient memories , 2008, ICML '08.

[19]  Olivier Teytaud,et al.  On the Parallelization of Monte-Carlo planning , 2008, ICINCO 2008.

[20]  Olivier Teytaud,et al.  The Parallelization of Monte-Carlo Planning - Parallelization of MC-Planning , 2008, ICINCO-ICSO.

[21]  S. Gelly,et al.  Combining expert, offline, transient and online knowledge in Monte-Carlo exploration , 2008 .

[22]  David Silver,et al.  Combining online and offline knowledge in UCT , 2007, ICML '07.

[23]  Sylvain Gelly,et al.  Modifications of UCT and sequence-like simulations for Monte-Carlo Go , 2007, 2007 IEEE Symposium on Computational Intelligence and Games.

[24]  Richard S. Sutton,et al.  Reinforcement Learning of Local Shape in the Game of Go , 2007, IJCAI.

[25]  David Silver,et al.  Combining Online and Offline Learning in UCT , 2007 .

[26]  Rémi Coulom,et al.  Computing "Elo Ratings" of Move Patterns in the Game of Go , 2007, J. Int. Comput. Games Assoc..

[27]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[28]  Bruno Bouzy,et al.  Move-Pruning Techniques for Monte-Carlo Go , 2006, ACG.

[29]  Bruno Bouzy,et al.  HISTORY AND TERRITORY HEURISTICS FOR MONTE CARLO GO , 2006 .

[30]  Rémi Coulom,et al.  Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search , 2006, Computers and Games.

[31]  Olivier Teytaud,et al.  Modification of UCT with Patterns in Monte-Carlo Go , 2006 .

[32]  Bruno Bouzy,et al.  Associating domain-dependent knowledge and Monte Carlo approaches within a Go program , 2005, Inf. Sci..

[33]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[34]  Bruno Bouzy,et al.  Associating Shallow and Selective Global Tree Search with Monte Carlo for 9*9 Go , 2004, Computers and Games.

[35]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[36]  Bruno Bouzy,et al.  Monte-Carlo Go Developments , 2003, ACG.

[37]  Markus Enzenberger,et al.  Evaluation in Go by a Neural Network using Soft Segmentation , 2003, ACG.

[38]  Martin Müller,et al.  Computer Go , 2002, Artif. Intell..

[39]  Brian Sheppard,et al.  World-championship-caliber Scrabble , 2002, Artif. Intell..

[40]  Dap Hartmann,et al.  MACHINES THAT LEARN TO PLAY GAMES , 2002 .

[41]  Bruno Bouzy,et al.  Computer Go: An AI oriented survey , 2001, Artif. Intell..

[42]  Jonathan Schaeffer,et al.  Temporal Difference Learning Applied to a High-Performance Game-Playing Program , 2001, IJCAI.

[43]  Johannes Fürnkranz,et al.  Machines that learn to play games , 2001 .

[44]  Fredrik A. Dahl,et al.  Honte, a go-playing program using neural nets , 2001 .

[45]  Jonathan Schaeffer,et al.  The games computers (and people) play , 2000, Adv. Comput..

[46]  Jonathan Schaeffer,et al.  Using Probabilistic Knowledge and Simulation to Play Poker , 1999, AAAI/IAAI.

[47]  Michael Buro,et al.  From Simple Features to Sophisticated Evaluation Functions , 1998, Computers and Games.

[48]  J. McCarthy AI as Sport , 1997, Science.

[49]  Gerald Tesauro,et al.  On-line Policy Improvement using Monte-Carlo Search , 1996, NIPS.

[50]  M. Enzenberger The Integration of A Priori Knowledge into a Go Playing Neural Network , 1996 .

[51]  Richard S. Sutton,et al.  Generalization in ReinforcementLearning : Successful Examples UsingSparse Coarse , 1996 .

[52]  Terrence J. Sejnowski,et al.  Temporal Difference Learning of Position Evaluation in the Game of Go , 1993, NIPS.

[53]  Bernd Brügmann Max-Planck Monte Carlo Go , 1993 .

[54]  Richard S. Sutton,et al.  Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming , 1990, ML.

[55]  Bruce Abramson,et al.  Expected-Outcome: A General Model of Static Evaluation , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Jonathan Schaeffer,et al.  The History Heuristic and Alpha-Beta Search Enhancements in Practice , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  D. Sandbach All systems go. , 1986, The Health service journal.