Observation of Carbodicarbene Ligand Redox Noninnocence in Highly Oxidized Iron Complexes.
暂无分享,去创建一个
Rakesh Ganguly | K. Ray | Shengfa Ye | E. Bill | Jason England | Puneet Gupta | Siu-Chung Chan | Xenia Engelmann | Zhi Zhong Ang
[1] Chao‐Ping Hsu,et al. One-Pot Tandem Photoredox and Cross-Coupling Catalysis with a Single Palladium Carbodicarbene Complex. , 2018, Angewandte Chemie.
[2] Wen‐Ching Chen,et al. Carbodicarbenes and their Captodative Behavior in Catalysis , 2018 .
[3] Rakesh Ganguly,et al. E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations. , 2017, Inorganic chemistry.
[4] G. Yap,et al. Invisible Chelating Effect Exhibited between Carbodicarbene and Phosphine through π–π Interaction and Implication in the Cross-Coupling Reaction , 2017 .
[5] S. Meek,et al. Chiral Pincer Carbodicarbene Ligands for Enantioselective Rhodium-Catalyzed Hydroarylation of Terminal and Internal 1,3-Dienes with Indoles. , 2017, Journal of the American Chemical Society.
[6] Allegra L. Liberman-Martin,et al. Ruthenium Olefin Metathesis Catalysts Featuring a Labile Carbodicarbene Ligand , 2017 .
[7] G. Frenking,et al. Carbodicarbenes: Unexpected π-Accepting Ability during Reactivity with Small Molecules. , 2017, Journal of the American Chemical Society.
[8] Mohand Melaimi,et al. Cyclische Alkylaminocarbene (CAACs): Neues von guten Bekannten , 2017 .
[9] G. Bertrand,et al. Cyclic (Alkyl)(amino)carbenes (CAACs): Recent Developments. , 2017, Angewandte Chemie.
[10] Matthew J. Goldfogel,et al. Diastereoselective Synthesis of γ-Substituted 2-Butenolides via (CDC)-Rh-Catalyzed Intermolecular Hydroalkylation of Dienes with Silyloxyfurans. , 2017, Organic letters.
[11] C. Schneider,et al. Neutrale Dibor‐Analoga von archetypischen aromatischen Verbindungen durch spontane Cycloaddition , 2016 .
[12] H. Braunschweig,et al. Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition. , 2016, Angewandte Chemie.
[13] Rakesh Ganguly,et al. Bis(carbodicarbene)phosphenium trication: the case against hypervalency. , 2016, Chemical communications.
[14] G. Bertrand,et al. Synthesis of a Carbodicyclopropenylidene: A Carbodicarbene based Solely on Carbon. , 2016, Angewandte Chemie.
[15] Matthew J. Goldfogel,et al. Diastereoselective synthesis of vicinal tertiary and N-substituted quaternary stereogenic centers by catalytic hydroalkylation of dienes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04908c , 2016, Chemical science.
[16] H. Roesky,et al. Cyclic Alkyl(amino) Carbene Stabilized Complexes with Low Coordinate Metals of Enduring Nature. , 2016, Accounts of chemical research.
[17] H. Roesky,et al. Silicon based radicals, radical ions, diradicals and diradicaloids. , 2016, Chemical Society reviews.
[18] T. Jurca,et al. Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. , 2015, Angewandte Chemie.
[19] Matthew J. Goldfogel,et al. Lewis acid activation of carbodicarbene catalysts for Rh-catalyzed hydroarylation of dienes. , 2015, Journal of the American Chemical Society.
[20] D. Stephan,et al. Cyclic bent allene hydrido-carbonyl complexes of ruthenium: highly active catalysts for hydrogenation of olefins. , 2015, Journal of the American Chemical Society.
[21] G. Bertrand,et al. Cyclic (alkyl)(amino)carbenes (CAACs): stable carbenes on the rise. , 2015, Accounts of chemical research.
[22] Chao‐Ping Hsu,et al. Synthesis and isolation of an acyclic tridentate bis(pyridine)carbodicarbene and studies on its structural implications and reactivities. , 2015, Angewandte Chemie.
[23] F. Glorius,et al. An overview of N-heterocyclic carbenes , 2014, Nature.
[24] Matthew J. Goldfogel,et al. Intermolecular hydroamination of 1,3-dienes catalyzed by bis(phosphine)carbodicarbene-rhodium complexes. , 2014, Journal of the American Chemical Society.
[25] P. Jerabek,et al. Isolation of neutral mononuclear copper complexes stabilized by two cyclic (alkyl)(amino)carbenes. , 2014, Journal of the American Chemical Society.
[26] Chao‐Ping Hsu,et al. The elusive three-coordinate dicationic hydrido boron complex. , 2014, Journal of the American Chemical Society.
[27] G. Bertrand,et al. Carbodicarbenes, carbon(0) derivatives, can dimerize. , 2013, Chemistry, an Asian journal.
[28] G. Frenking,et al. Synthesis and characterization of a two-coordinate manganese complex and its reaction with molecular hydrogen at room temperature. , 2013, Angewandte Chemie.
[29] Paul Jerabek,et al. Isolierung neutraler mono‐ und dinuklearer Goldkomplexe von cyclischen Alkyl(amino)carbenen , 2013 .
[30] P. Jerabek,et al. Isolation of neutral mono- and dinuclear gold complexes of cyclic (alkyl)(amino)carbenes. , 2013, Angewandte Chemie.
[31] G. Frenking,et al. A singlet biradicaloid zinc compound and its nonradical counterpart. , 2013, Journal of the American Chemical Society.
[32] D. Stephan,et al. Three-Coordinate, Cyclic Bent Allene Iron Complexes , 2013 .
[33] G. Yap,et al. Synthetic Modification of Acyclic Bent Allenes (Carbodicarbenes) and Further Studies on Their Structural Implications and Reactivities , 2013 .
[34] D. Stalke,et al. Easy access to silicon(0) and silicon(II) compounds. , 2013, Inorganic chemistry.
[35] D. Stalke,et al. Umwandlung eines Singulett-Silylens in ein stabiles Biradikal , 2013 .
[36] G. Frenking,et al. Conversion of a singlet silylene to a stable biradical. , 2013, Angewandte Chemie.
[37] Bas de Bruin,et al. Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions , 2012 .
[38] Wojciech I Dzik,et al. Redox noninnocence of carbene ligands: carbene radicals in (catalytic) C-C bond formation. , 2011, Inorganic chemistry.
[39] Mohand Melaimi,et al. Stabile cyclische Carbene und verwandte Spezies jenseits der Diaminocarbene , 2010 .
[40] G. Bertrand,et al. Stable cyclic carbenes and related species beyond diaminocarbenes. , 2010, Angewandte Chemie.
[41] G. Frenking,et al. Carbodicarbenes and related divalent carbon(0) compounds. , 2010, Chemistry.
[42] G. Frenking,et al. Carbodiphosphorane C(PPh3)2 as a Single and Twofold Lewis Base with Boranes: Synthesis, Crystal Structures and Theoretical Studies on [H3B{C(PPh3)2}] and [{(μ-H)H4B2}{C(PPh3)2}]+ , 2009 .
[43] G. Frenking,et al. Exocyclic delocalization at the expense of aromaticity in 3,5-bis(pi-donor) substituted pyrazolium ions and corresponding cyclic bent allenes. , 2009, Journal of the American Chemical Society.
[44] W. Thiel,et al. Coordination chemistry at carbon. , 2009, Nature chemistry.
[45] G. Bertrand,et al. Are Allenes with Zwitterionic Character Still Allenes? Of Course! , 2009 .
[46] M. Doyle. Außergewöhnlich selektive Cyclopropanierungen mit chiralen Cobalt(II)-Porphyrin-Katalysatoren† , 2009 .
[47] M. Doyle. Exceptional selectivity in cyclopropanation reactions catalyzed by chiral cobalt(II)-porphyrin catalysts. , 2009, Angewandte Chemie.
[48] G. Frenking,et al. First and second proton affinities of carbon bases. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.
[49] G. Bertrand,et al. Synthesis and ligand properties of stable five-membered-ring allenes containing only second-row elements. , 2008, Angewandte Chemie.
[50] F. Hahn,et al. Carbodicarbene: Verbindungen mit zweibindigem Kohlenstoff(0)‐Atom , 2008 .
[51] F. Hahn,et al. Carbodicarbenes: divalent carbon(0) compounds. , 2008, Angewandte Chemie.
[52] Mareike C. Jahnke,et al. Heterocyclische Carbene – Synthese und Koordinationschemie , 2008 .
[53] F. Hahn,et al. Heterocyclic carbenes: synthesis and coordination chemistry. , 2008, Angewandte Chemie.
[54] G. Bertrand,et al. Synthesis of an extremely bent acyclic allene (a "carbodicarbene"): a strong donor ligand. , 2008, Angewandte Chemie.
[55] A. Fürstner,et al. Coordination chemistry of ene-1,1-diamines and a prototype "carbodicarbene". , 2008, Angewandte Chemie.
[56] G. Frenking,et al. Divalent carbon(0) chemistry, part 1: Parent compounds. , 2008, Chemistry.
[57] Ralf Tonner,et al. Divalent carbon(0) chemistry, part 2: Protonation and complexes with main group and transition metal Lewis acids. , 2008, Chemistry.
[58] G. Frenking,et al. C(NHC)2: zweibindige Kohlenstoff(0)‐Verbindungen mit N‐heterocyclischen Carbenliganden – theoretische Belege für eine Molekülklasse mit vielversprechenden Eigenschaften , 2007 .
[59] G. Frenking,et al. C(NHC)2: divalent carbon(0) compounds with N-heterocyclic carbene ligands-theoretical evidence for a class of molecules with promising chemical properties. , 2007, Angewandte Chemie.
[60] Martin Nieger,et al. Evidence for Ligand-Centered Reactivity of a 17e Radical Cationic 2H-Azaphosphirene Complex , 2007 .
[61] R. Martínez‐Álvarez,et al. Fischer carbene complexes: beautiful playgrounds to study single electron transfer (SET) reactions. , 2007, Chemistry.
[62] G. Frenking,et al. Carbodiphosphorane: die Chemie von zweibindigem Kohlenstoff(0) , 2006 .
[63] Ralf Tonner,et al. Carbodiphosphoranes: the chemistry of divalent carbon(0). , 2006, Angewandte Chemie.
[64] J. Vicente,et al. New Ylide-, Alkynyl-, and Mixed Alkynyl/Ylide-Gold(I) Complexes , 2002 .
[65] K. Weber,et al. Modeling Surface Reactivity of Metal Oxides: Synthesis and Structure of an Ionic Organorhenyl Perrhenate Formed by Ligand-Induced Dissociation of Covalent Re2O7 , 1994 .
[66] W. Kaim,et al. A first radical cation chelate ligand: electron paramagnetic resonance spectra of singly reduced 3,3′-diazamethylviologen, DAMV˙+ and the rhenium(I) complex [(DAMV˙+)Re +(CO)3(PPh3)]2+ , 1990 .
[67] N. Cooper,et al. Highly Reduced Carbene Complexes: Formation of an Alkoxymalonate by Coupling of Carbon Dioxide with the Nucleophilic Carbene in (Cr(CO4)=C(OMe)PH)2- , 1989 .
[68] J. L. Templeton,et al. Cationic phosphonium carbyne and bis(phosphonium) carbene tungsten complexes: [Tp′(OC)2WC(PMe3)n][PF6] (n = 1, 2) , 1987 .
[69] H. Schmidbaur,et al. The Ambident Ligand Properties of Bis(trimethylphosphoranylidene)methane , 1976 .
[70] H. Schmidbaur,et al. Die ambidenten Ligandeigenschaften des Bis(trimethylphosphoranyliden)methans , 1976 .
[71] P. Krusic,et al. An electron spin resonance study of the radical anions derived from metal carbene complexes of chromium, molybdenum, and tungsten , 1976 .
[72] F. Ramirez,et al. HEXAPHENYLCARBODIPHOSPHORANE, (C6H5)3PCP(C6H5)3 , 1961 .