Observation of Carbodicarbene Ligand Redox Noninnocence in Highly Oxidized Iron Complexes.

To probe the possibility that carbodicarbenes (CDCs) are redox active ligands, all four members of the redox series [Fe(1)2 ]n+ (n=2-5) were synthesized, where 1 is a neutral tridentate CDC. Through a combination of spectroscopy and DFT calculations, the electronic structure of the pentacation is shown to be [FeIII (1.+ )2 ]5+ (S= 1 / 2 ). That of [Fe(1)2 ]4+ is more ambiguous, but it has significant contributions from the open-shell singlet [FeIII (1)(1.+ )]4+ (S=0). The observed spin states derive from antiferromagnetic coupling of their constituent low-spin iron(III) centres and cation radical ligands. This marks the first time redox activity has been observed for carbones and expands the diverse chemical behaviour known for these ligands.

[1]  Chao‐Ping Hsu,et al.  One-Pot Tandem Photoredox and Cross-Coupling Catalysis with a Single Palladium Carbodicarbene Complex. , 2018, Angewandte Chemie.

[2]  Wen‐Ching Chen,et al.  Carbodicarbenes and their Captodative Behavior in Catalysis , 2018 .

[3]  Rakesh Ganguly,et al.  E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations. , 2017, Inorganic chemistry.

[4]  G. Yap,et al.  Invisible Chelating Effect Exhibited between Carbodicarbene and Phosphine through π–π Interaction and Implication in the Cross-Coupling Reaction , 2017 .

[5]  S. Meek,et al.  Chiral Pincer Carbodicarbene Ligands for Enantioselective Rhodium-Catalyzed Hydroarylation of Terminal and Internal 1,3-Dienes with Indoles. , 2017, Journal of the American Chemical Society.

[6]  Allegra L. Liberman-Martin,et al.  Ruthenium Olefin Metathesis Catalysts Featuring a Labile Carbodicarbene Ligand , 2017 .

[7]  G. Frenking,et al.  Carbodicarbenes: Unexpected π-Accepting Ability during Reactivity with Small Molecules. , 2017, Journal of the American Chemical Society.

[8]  Mohand Melaimi,et al.  Cyclische Alkylaminocarbene (CAACs): Neues von guten Bekannten , 2017 .

[9]  G. Bertrand,et al.  Cyclic (Alkyl)(amino)carbenes (CAACs): Recent Developments. , 2017, Angewandte Chemie.

[10]  Matthew J. Goldfogel,et al.  Diastereoselective Synthesis of γ-Substituted 2-Butenolides via (CDC)-Rh-Catalyzed Intermolecular Hydroalkylation of Dienes with Silyloxyfurans. , 2017, Organic letters.

[11]  C. Schneider,et al.  Neutrale Dibor‐Analoga von archetypischen aromatischen Verbindungen durch spontane Cycloaddition , 2016 .

[12]  H. Braunschweig,et al.  Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition. , 2016, Angewandte Chemie.

[13]  Rakesh Ganguly,et al.  Bis(carbodicarbene)phosphenium trication: the case against hypervalency. , 2016, Chemical communications.

[14]  G. Bertrand,et al.  Synthesis of a Carbodicyclopropenylidene: A Carbodicarbene based Solely on Carbon. , 2016, Angewandte Chemie.

[15]  Matthew J. Goldfogel,et al.  Diastereoselective synthesis of vicinal tertiary and N-substituted quaternary stereogenic centers by catalytic hydroalkylation of dienes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04908c , 2016, Chemical science.

[16]  H. Roesky,et al.  Cyclic Alkyl(amino) Carbene Stabilized Complexes with Low Coordinate Metals of Enduring Nature. , 2016, Accounts of chemical research.

[17]  H. Roesky,et al.  Silicon based radicals, radical ions, diradicals and diradicaloids. , 2016, Chemical Society reviews.

[18]  T. Jurca,et al.  Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. , 2015, Angewandte Chemie.

[19]  Matthew J. Goldfogel,et al.  Lewis acid activation of carbodicarbene catalysts for Rh-catalyzed hydroarylation of dienes. , 2015, Journal of the American Chemical Society.

[20]  D. Stephan,et al.  Cyclic bent allene hydrido-carbonyl complexes of ruthenium: highly active catalysts for hydrogenation of olefins. , 2015, Journal of the American Chemical Society.

[21]  G. Bertrand,et al.  Cyclic (alkyl)(amino)carbenes (CAACs): stable carbenes on the rise. , 2015, Accounts of chemical research.

[22]  Chao‐Ping Hsu,et al.  Synthesis and isolation of an acyclic tridentate bis(pyridine)carbodicarbene and studies on its structural implications and reactivities. , 2015, Angewandte Chemie.

[23]  F. Glorius,et al.  An overview of N-heterocyclic carbenes , 2014, Nature.

[24]  Matthew J. Goldfogel,et al.  Intermolecular hydroamination of 1,3-dienes catalyzed by bis(phosphine)carbodicarbene-rhodium complexes. , 2014, Journal of the American Chemical Society.

[25]  P. Jerabek,et al.  Isolation of neutral mononuclear copper complexes stabilized by two cyclic (alkyl)(amino)carbenes. , 2014, Journal of the American Chemical Society.

[26]  Chao‐Ping Hsu,et al.  The elusive three-coordinate dicationic hydrido boron complex. , 2014, Journal of the American Chemical Society.

[27]  G. Bertrand,et al.  Carbodicarbenes, carbon(0) derivatives, can dimerize. , 2013, Chemistry, an Asian journal.

[28]  G. Frenking,et al.  Synthesis and characterization of a two-coordinate manganese complex and its reaction with molecular hydrogen at room temperature. , 2013, Angewandte Chemie.

[29]  Paul Jerabek,et al.  Isolierung neutraler mono‐ und dinuklearer Goldkomplexe von cyclischen Alkyl(amino)carbenen , 2013 .

[30]  P. Jerabek,et al.  Isolation of neutral mono- and dinuclear gold complexes of cyclic (alkyl)(amino)carbenes. , 2013, Angewandte Chemie.

[31]  G. Frenking,et al.  A singlet biradicaloid zinc compound and its nonradical counterpart. , 2013, Journal of the American Chemical Society.

[32]  D. Stephan,et al.  Three-Coordinate, Cyclic Bent Allene Iron Complexes , 2013 .

[33]  G. Yap,et al.  Synthetic Modification of Acyclic Bent Allenes (Carbodicarbenes) and Further Studies on Their Structural Implications and Reactivities , 2013 .

[34]  D. Stalke,et al.  Easy access to silicon(0) and silicon(II) compounds. , 2013, Inorganic chemistry.

[35]  D. Stalke,et al.  Umwandlung eines Singulett-Silylens in ein stabiles Biradikal , 2013 .

[36]  G. Frenking,et al.  Conversion of a singlet silylene to a stable biradical. , 2013, Angewandte Chemie.

[37]  Bas de Bruin,et al.  Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions , 2012 .

[38]  Wojciech I Dzik,et al.  Redox noninnocence of carbene ligands: carbene radicals in (catalytic) C-C bond formation. , 2011, Inorganic chemistry.

[39]  Mohand Melaimi,et al.  Stabile cyclische Carbene und verwandte Spezies jenseits der Diaminocarbene , 2010 .

[40]  G. Bertrand,et al.  Stable cyclic carbenes and related species beyond diaminocarbenes. , 2010, Angewandte Chemie.

[41]  G. Frenking,et al.  Carbodicarbenes and related divalent carbon(0) compounds. , 2010, Chemistry.

[42]  G. Frenking,et al.  Carbodiphosphorane C(PPh3)2 as a Single and Twofold Lewis Base with Boranes: Synthesis, Crystal Structures and Theoretical Studies on [H3B{C(PPh3)2}] and [{(μ-H)H4B2}{C(PPh3)2}]+ , 2009 .

[43]  G. Frenking,et al.  Exocyclic delocalization at the expense of aromaticity in 3,5-bis(pi-donor) substituted pyrazolium ions and corresponding cyclic bent allenes. , 2009, Journal of the American Chemical Society.

[44]  W. Thiel,et al.  Coordination chemistry at carbon. , 2009, Nature chemistry.

[45]  G. Bertrand,et al.  Are Allenes with Zwitterionic Character Still Allenes? Of Course! , 2009 .

[46]  M. Doyle Außergewöhnlich selektive Cyclopropanierungen mit chiralen Cobalt(II)-Porphyrin-Katalysatoren† , 2009 .

[47]  M. Doyle Exceptional selectivity in cyclopropanation reactions catalyzed by chiral cobalt(II)-porphyrin catalysts. , 2009, Angewandte Chemie.

[48]  G. Frenking,et al.  First and second proton affinities of carbon bases. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[49]  G. Bertrand,et al.  Synthesis and ligand properties of stable five-membered-ring allenes containing only second-row elements. , 2008, Angewandte Chemie.

[50]  F. Hahn,et al.  Carbodicarbene: Verbindungen mit zweibindigem Kohlenstoff(0)‐Atom , 2008 .

[51]  F. Hahn,et al.  Carbodicarbenes: divalent carbon(0) compounds. , 2008, Angewandte Chemie.

[52]  Mareike C. Jahnke,et al.  Heterocyclische Carbene – Synthese und Koordinationschemie , 2008 .

[53]  F. Hahn,et al.  Heterocyclic carbenes: synthesis and coordination chemistry. , 2008, Angewandte Chemie.

[54]  G. Bertrand,et al.  Synthesis of an extremely bent acyclic allene (a "carbodicarbene"): a strong donor ligand. , 2008, Angewandte Chemie.

[55]  A. Fürstner,et al.  Coordination chemistry of ene-1,1-diamines and a prototype "carbodicarbene". , 2008, Angewandte Chemie.

[56]  G. Frenking,et al.  Divalent carbon(0) chemistry, part 1: Parent compounds. , 2008, Chemistry.

[57]  Ralf Tonner,et al.  Divalent carbon(0) chemistry, part 2: Protonation and complexes with main group and transition metal Lewis acids. , 2008, Chemistry.

[58]  G. Frenking,et al.  C(NHC)2: zweibindige Kohlenstoff(0)‐Verbindungen mit N‐heterocyclischen Carbenliganden – theoretische Belege für eine Molekülklasse mit vielversprechenden Eigenschaften , 2007 .

[59]  G. Frenking,et al.  C(NHC)2: divalent carbon(0) compounds with N-heterocyclic carbene ligands-theoretical evidence for a class of molecules with promising chemical properties. , 2007, Angewandte Chemie.

[60]  Martin Nieger,et al.  Evidence for Ligand-Centered Reactivity of a 17e Radical Cationic 2H-Azaphosphirene Complex , 2007 .

[61]  R. Martínez‐Álvarez,et al.  Fischer carbene complexes: beautiful playgrounds to study single electron transfer (SET) reactions. , 2007, Chemistry.

[62]  G. Frenking,et al.  Carbodiphosphorane: die Chemie von zweibindigem Kohlenstoff(0) , 2006 .

[63]  Ralf Tonner,et al.  Carbodiphosphoranes: the chemistry of divalent carbon(0). , 2006, Angewandte Chemie.

[64]  J. Vicente,et al.  New Ylide-, Alkynyl-, and Mixed Alkynyl/Ylide-Gold(I) Complexes , 2002 .

[65]  K. Weber,et al.  Modeling Surface Reactivity of Metal Oxides: Synthesis and Structure of an Ionic Organorhenyl Perrhenate Formed by Ligand-Induced Dissociation of Covalent Re2O7 , 1994 .

[66]  W. Kaim,et al.  A first radical cation chelate ligand: electron paramagnetic resonance spectra of singly reduced 3,3′-diazamethylviologen, DAMV˙+ and the rhenium(I) complex [(DAMV˙+)Re +(CO)3(PPh3)]2+ , 1990 .

[67]  N. Cooper,et al.  Highly Reduced Carbene Complexes: Formation of an Alkoxymalonate by Coupling of Carbon Dioxide with the Nucleophilic Carbene in (Cr(CO4)=C(OMe)PH)2- , 1989 .

[68]  J. L. Templeton,et al.  Cationic phosphonium carbyne and bis(phosphonium) carbene tungsten complexes: [Tp′(OC)2WC(PMe3)n][PF6] (n = 1, 2) , 1987 .

[69]  H. Schmidbaur,et al.  The Ambident Ligand Properties of Bis(trimethylphosphoranylidene)methane , 1976 .

[70]  H. Schmidbaur,et al.  Die ambidenten Ligandeigenschaften des Bis(trimethylphosphoranyliden)methans , 1976 .

[71]  P. Krusic,et al.  An electron spin resonance study of the radical anions derived from metal carbene complexes of chromium, molybdenum, and tungsten , 1976 .

[72]  F. Ramirez,et al.  HEXAPHENYLCARBODIPHOSPHORANE, (C6H5)3PCP(C6H5)3 , 1961 .