Explanatory relations in arbitrary logics based on satisfaction systems, cutting and retraction

The aim of this paper is to introduce a new framework for defining abductive reasoning operators based on a notion of retraction in arbitrary logics defined as satisfaction systems. We show how this framework leads to the design of explanatory relations satisfying properties of abductive reasoning, and discuss its application to several logics. This extends previous work on propositional logics where retraction was defined as a morphological erosion. Here weaker properties are required for retraction, leading to a larger set of suitable operators for abduction for different logics.

[1]  Szymon Klarman,et al.  ABox abduction in ALC using a DL tableau , 2012, SAICSIT '12.

[2]  Isabelle Bloch,et al.  Mathematical Morphology , 2007, Handbook of Spatial Logics.

[3]  Fiora Pirri,et al.  First order abduction via tableau and sequent calculi , 1993, Log. J. IGPL.

[4]  Nicolas Peltier,et al.  An Approach to Abductive Reasoning in Equational Logic , 2013, IJCAI.

[5]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[6]  Georg Gottlob,et al.  The complexity of logic-based abduction , 1993, JACM.

[7]  Pietro Torasso,et al.  A spectrum of logical definitions of model‐based diagnosis 1 , 1991, Comput. Intell..

[8]  Carlos Uzcátegui,et al.  Preferences and explanations , 2003, Artif. Intell..

[9]  Peter A. Flach Rationality Postulates for Induction , 1996, TARK.

[10]  Katarina Britz,et al.  Towards Defeasible SROIQ , 2017, Description Logics.

[11]  Isabelle Bloch,et al.  Morphologic for knowledge dynamics: revision, fusion, abduction , 2018, ArXiv.

[12]  Isabelle Bloch,et al.  Explanatory Reasoning for Image Understanding Using Formal Concept Analysis and Description Logics , 2014, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[13]  Fiora Pirri,et al.  Propositional Abduction in Modal Logic , 1995, Log. J. IGPL.

[14]  Meghyn Bienvenu,et al.  Prime Implicates and Prime Implicants: From Propositional to Modal Logic , 2009, J. Artif. Intell. Res..

[15]  Willard Van Orman Quine,et al.  A Way to Simplify Truth Functions , 1955 .

[16]  Isabelle Bloch,et al.  Abductive Reasoning Using Tableau Methods for High-Level Image Interpretation , 2015, KI.

[17]  Martin Homola,et al.  Tableau-Based ABox Abduction for the ALCHO Description Logic , 2017, Description Logics.

[18]  C. Hartshorne,et al.  Collected Papers of Charles Sanders Peirce , 1935, Nature.

[19]  Isabelle Bloch,et al.  Concept Dissimilarity with Triangle Inequality , 2014, KR.

[20]  Jerry R. Hobbs Abduction in Natural Language Understanding , 2008 .

[21]  Pierre Marquis,et al.  Extending abduction from propositional to first-order logic , 1991, FAIR.

[22]  Dov M. Gabbay,et al.  Abduction and Dialogical Proof in Argumentation and Logic Programming , 2014, ECAI.

[23]  Richard Booth,et al.  Using distances for aggregation in abstract argumentation , 2014 .

[24]  Ángel Nepomuceno-Fernández,et al.  Model-Baded Abduction via Dual Resolution , 2006, Log. J. IGPL.

[25]  Walter Stechele,et al.  A reasoning approach to enable abductive semantic explanation upon collected observations for forensic visual surveillance , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[26]  Eduardo L. Fermé,et al.  Belief Revision , 2007, Inteligencia Artif..

[27]  Isabelle Bloch,et al.  Dual Logic Concepts based on Mathematical Morphology in Stratified Institutions: Applications to Spatial Reasoning , 2017, ArXiv.

[28]  R. Diaconescu Institution-independent model theory , 2008 .

[29]  Nicolas Peltier,et al.  A Calculus for Generating Ground Explanations , 2012, IJCAR.

[30]  Ulrike Sattler,et al.  A Case for Abductive Reasoning over Ontologies , 2006, OWLED.

[31]  Jérôme Lang,et al.  Towards mathematical morpho-logics , 2002 .

[32]  Isabelle Bloch,et al.  A Unified Treatment for Knowledge Dynamics , 2004, KR.

[33]  Isabelle Bloch,et al.  Belief revision, minimal change and relaxation: A general framework based on satisfaction systems, and applications to description logics , 2015, Artif. Intell..

[34]  Meghyn Bienvenu,et al.  Complexity of Abduction in the EL Family of Lightweight Description Logics , 2008, KR.

[35]  Szymon Klarman,et al.  ABox Abduction in Description Logic , 2008 .

[36]  Peter A. Flach,et al.  Logical characterisations of inductive learning , 2000 .

[37]  Carlos Uzcátegui,et al.  Jumping to Explanations versus Jumping to Conclusions , 1999, Artificial Intelligence.

[38]  Ángel Nepomuceno-Fernández,et al.  Towards Abductive Reasoning in First-order Logic , 2006, Log. J. IGPL.

[39]  Peter A. Flach On the logic of hypothesis generation , 2000 .

[40]  Johan van Benthem,et al.  Handbook of Spatial Logics , 2007 .