A family of Kurchatov-type methods and its stability
暂无分享,去创建一个
Alicia Cordero | Juan R. Torregrosa | Fazlollah Soleymani | F. Khaksar Haghani | F. Soleymani | A. Cordero | F. K. Haghani | J. Torregrosa
[1] Ioannis K. Argyros. Concerning the semilocal convergence of Newton’s method and convex majorants , 2008 .
[2] J. Traub. Iterative Methods for the Solution of Equations , 1982 .
[3] Clark Robinson,et al. What Is a Chaotic Attractor? , 2008 .
[4] Alicia Cordero,et al. A modified Newton-Jarratt’s composition , 2010, Numerical Algorithms.
[6] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[7] Ioannis K. Argyros,et al. The secant method and fixed points of nonlinear operators , 1988 .
[8] L. Jay,et al. A Note on Q-order of Convergence , 2001 .
[9] Sergio Amat,et al. On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods , 2011, J. Comput. Appl. Math..
[10] J. F. Steffensen. Remarks on iteration. , 1933 .
[11] Miquel Grau-Sánchez,et al. Frozen divided difference scheme for solving systems of nonlinear equations , 2011, J. Comput. Appl. Math..
[12] Á. Alberto Magreñán,et al. On the election of the damped parameter of a two-step relaxed Newton-type method , 2016 .
[13] R. Robinson,et al. An Introduction to Dynamical Systems: Continuous and Discrete , 2004 .
[14] S. M. Shakhno,et al. On a Kurchatov's method of linear interpolation for solving nonlinear equations , 2004 .
[15] Wadia Faid Hassan Al-shameri,et al. Dynamical Properties of the Hénon Mapping , 2012 .
[16] Alicia Cordero,et al. Complex dynamics of derivative-free methods for nonlinear equations , 2013, Appl. Math. Comput..
[17] Alicia Cordero,et al. Variants of Newton's Method using fifth-order quadrature formulas , 2007, Appl. Math. Comput..
[18] Changbum Chun,et al. Corrigendum to "Basins of attraction for optimal eighth-order methods to find simple roots of nonlinear equations" , 2014, Appl. Math. Comput..
[19] M. Hénon,et al. A two-dimensional mapping with a strange attractor , 1976 .
[20] Alicia Cordero,et al. A multidimensional dynamical approach to iterative methods with memory , 2015, Appl. Math. Comput..
[21] Sulla Derivabilita,et al. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO , 2008 .
[22] Alicia Cordero,et al. Stability of a fourth order bi-parametric family of iterative methods , 2017, J. Comput. Appl. Math..
[23] Puneet Gupta,et al. Some efficient derivative free methods with memory for solving nonlinear equations , 2012, Appl. Math. Comput..
[24] Q Zheng,et al. OPTIMAL STEFFENSEN-TYPE FAMILIES FOR SOLVING NONLINEAR EQUATIONS , 2011 .
[25] Miodrag S. Petkovic,et al. Multipoint methods for solving nonlinear equations: A survey , 2014, Appl. Math. Comput..
[26] M. Bernhard. Introduction to Chaotic Dynamical Systems , 1992 .
[27] S. Amat,et al. Dynamics of the King and Jarratt iterations , 2005 .
[28] H. T. Kung,et al. Optimal Order of One-Point and Multipoint Iteration , 1974, JACM.
[29] Ioannis K. Argyros,et al. On the local convergence and the dynamics of Chebyshev-Halley methods with six and eight order of convergence , 2016, J. Comput. Appl. Math..
[30] Juan A. Carrasco,et al. A parameterized multi-step Newton method for solving systems of nonlinear equations , 2015, Numerical Algorithms.
[31] M. A. Hernández-Verón,et al. On a Newton-Kurchatov-type Iterative Process , 2016 .
[32] M. Hermite,et al. Sur la formule d'interpolation de Lagrange , 1878 .
[33] Alicia Cordero,et al. Stability of King's family of iterative methods with memory , 2017, J. Comput. Appl. Math..
[34] Stephen Lynch,et al. Dynamical Systems with Applications using Maple , 2000 .
[35] Ángel Alberto Magreñán,et al. A biparametric extension of King's fourth-order methods and their dynamics , 2016, Appl. Math. Comput..
[36] Jingya Li,et al. An optimal Steffensen-type family for solving nonlinear equations , 2011, Appl. Math. Comput..
[37] Alicia Cordero,et al. Basins of Attraction for Various Steffensen-Type Methods , 2014, J. Appl. Math..