ON THE RADIUS OF INJECTIVITY OF NULL HYPERSURFACES.
暂无分享,去创建一个
[1] S. Klainerman,et al. Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux , 2003, math/0309459.
[2] S. Klainerman,et al. A geometric approach to the Littlewood–Paley theory , 2003, math/0309463.
[3] S. Klainerman,et al. Causal geometry of Einstein-Vacuum spacetimes with finite curvature flux , 2003, math/0308123.
[4] Michael T. Anderson. Regularity for Lorentz metrics under curvature bounds , 2002, gr-qc/0209073.
[5] Michael T. Anderson. Cheeger-Gromov Theory and Applications to General Relativity , 2002, gr-qc/0208079.
[6] K. Roberts,et al. Thesis , 2002 .
[7] Michael T. Anderson. On Long-Time Evolution in General Relativity¶and Geometrization of 3-Manifolds , 2000, gr-qc/0006042.
[8] G. Galloway. Maximum Principles for Null Hypersurfaces and Null Splitting Theorems , 1999, math/9909158.
[9] G. Wei,et al. Comparison Geometry with Integral Curvature Bounds , 1997 .
[10] Y. Okada. Solvability of Convolution Operators , 1994 .
[11] S. Klainerman,et al. The Global Nonlinear Stability of the Minkowski Space. , 1994 .
[12] J. Cheeger,et al. Diffeomorphism finiteness for manifolds with ricci curvature andLn/2-norm of curvature bounded , 1991 .
[13] Jerrold E. Marsden,et al. Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity , 1977 .
[14] D. S. Jones,et al. THE WAVE EQUATION ON A CURVED SPACE‐TIME , 1977 .
[15] George F. R. Ellis,et al. The Large Scale Structure of Space-Time , 2023 .
[16] Y. Fourès-Bruhat,et al. Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires , 1952 .
[17] P. Petersen. Convergence Theorems in Riemannian Geometry , 1997 .
[18] J. Cheeger. FINITENESS THEOREMS FOR RIEMANNIAN MANIFOLDS. , 1970 .