High‐Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications

The field of nanophotonics has ushered in a new paradigm of light manipulation by enabling deep subdiffraction confinement assisted by metallic nanostructures. However, a key limitation which has stunted a full development of high‐performance nanophotonic devices is the typical large losses associated with the constituent metals. Although silver has long been known as the highest quality plasmonic material for visible and near infrared applications, its usage has been limited due to practical issues of continuous thin film formation, stability, adhesion, and surface roughness. Recently, a solution is proposed to the above issues by doping a proper amount of aluminum during silver deposition. In this work, the potential of doped silver for nanophotonic applications is presented by demonstrating several high‐performance key nanophotonic devices. First, long‐range surface plasmon polariton waveguides show propagation distances of a few centimeters. Second, hyperbolic metamaterials consisting of ultrathin Al‐doped Ag films are attained having a homogeneous and low‐loss response, and supporting a broad range of high‐k modes. Finally, transparent conductors based on Al‐doped Ag possess both a high and flat transmittance over the visible and near‐IR range.

[1]  L. Guo,et al.  Breaking Malus’ law: Highly efficient, broadband, and angular robust asymmetric light transmitting metasurface , 2016 .

[2]  M. Störmer,et al.  Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions , 2016, Nature Communications.

[3]  Chen Gong,et al.  Noble Metal Alloys for Plasmonics , 2016 .

[4]  Koray Aydin,et al.  Asymmetric Light Absorption and Reflection in Freestanding Nanostructured Metallic Membranes , 2015 .

[5]  T. Bae,et al.  Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells , 2015, Nature Communications.

[6]  T. Szoplik,et al.  Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation. , 2015, ACS applied materials & interfaces.

[7]  Junbo Gong,et al.  Thickness Dispersion of Surface Plasmon of Ag Nano-thin Films: Determination by Ellipsometry Iterated with Transmittance Method , 2015, Scientific Reports.

[8]  D. Norris,et al.  Plasmonic Films Can Easily Be Better: Rules and Recipes , 2015, ACS photonics.

[9]  S. Maier,et al.  Optical and Structural Properties of Ultra‐thin Gold Films , 2014, 1409.7338.

[10]  L. Guo,et al.  Ultrasmooth and thermally stable silver-based thin films with subnanometer roughness by aluminum doping. , 2014, ACS nano.

[11]  Xiaoqin Li,et al.  Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver , 2014, Advanced materials.

[12]  Cheng Zhang,et al.  An Ultrathin, Smooth, and Low‐Loss Al‐Doped Ag Film and Its Application as a Transparent Electrode in Organic Photovoltaics , 2014, Advanced materials.

[13]  Viktoriia E. Babicheva,et al.  Experimental demonstration of titanium nitride plasmonic interconnects. , 2014, Optics express.

[14]  Haifeng Hu,et al.  Broadband absorption engineering of hyperbolic metafilm patterns , 2014, Scientific Reports.

[15]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[16]  Viktor A. Podolskiy,et al.  All-semiconductor negative-index plasmonic absorbers. , 2014 .

[17]  T. Tumkur,et al.  Blue shift of spontaneous emission in hyperbolic metamaterial , 2013, Scientific Reports.

[18]  M. Wienk,et al.  Efficient Polymer Solar Cells on Opaque Substrates with a Laminated PEDOT:PSS Top Electrode , 2013 .

[19]  P. Deymier,et al.  Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study. , 2013, Optics express.

[20]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[21]  Jooho Moon,et al.  Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. , 2013, ACS nano.

[22]  P. Berini,et al.  Biosensing using straight long-range surface plasmon waveguides. , 2013, Optics express.

[23]  A. Fischer,et al.  Optical properties of metal-dielectric based epsilon near zero metamaterials , 2012 .

[24]  Cheng Zhang,et al.  Angle-Insensitive Structural Colours based on Metallic Nanocavities and Coloured Pixels beyond the Diffraction Limit , 2012, Scientific Reports.

[25]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[26]  S. Forrest,et al.  Snow cleaning of substrates increases yield of large-area organic photovoltaics , 2012 .

[27]  A. Alivisatos,et al.  Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. , 2012, ACS nano.

[28]  Barry P Rand,et al.  Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells , 2012, Advanced materials.

[29]  D. Bradley,et al.  Efficient Organic Solar Cells with Solution‐Processed Silver Nanowire Electrodes , 2011, Advanced materials.

[30]  Prashant Nagpal,et al.  Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. , 2011, ACS nano.

[31]  H. Cao,et al.  Morphology-induced plasmonic resonances in silver-aluminum alloy thin films , 2011 .

[32]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[33]  J. Rogers,et al.  Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. , 2011, Nature nanotechnology.

[34]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[35]  Liangbing Hu,et al.  Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures , 2011, Advanced materials.

[36]  Olle Inganäs,et al.  Organic photovoltaics: Avoiding indium , 2011 .

[37]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[38]  H. Atwater,et al.  Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators. , 2011, Nano letters.

[39]  G. Si,et al.  Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer. , 2010, ACS nano.

[40]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[41]  M. Arnold,et al.  A review of the optical properties of alloys and intermetallics for plasmonics , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[42]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2009, Nature nanotechnology.

[43]  P. Berini Long-range surface plasmon polaritons , 2009 .

[44]  P. Mead,et al.  Engineering of low-loss metal for nanoplasmonic and metamaterials applications , 2009, 0907.2484.

[45]  D. Lison,et al.  Sintered indium-tin-oxide (ITO) particles: a new pneumotoxic entity. , 2009, Toxicological sciences : an official journal of the Society of Toxicology.

[46]  V. Pruneri,et al.  Widely transparent electrodes based on ultrathin metals. , 2009, Optics letters.

[47]  James N. Hilfiker,et al.  Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry , 2008 .

[48]  C. Callender,et al.  Long-range surface plasmon polariton waveguides embedded in fluorinated polymer. , 2008, Applied optics.

[49]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[50]  H. Lezec,et al.  Negative Refraction at Visible Frequencies , 2007, Science.

[51]  S. Bozhevolnyi,et al.  Directional Couplers Using Long-Range Surface Plasmon Polariton Waveguides , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[52]  Pierre Berini,et al.  Characterization of long-range surface-plasmon-polariton waveguides , 2005 .

[53]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[54]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[55]  E. Williams,et al.  Dewetting dynamics of ultrathin silver films on Si(111) , 2003 .

[56]  Sergey I. Bozhevolnyi,et al.  Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths , 2003 .

[57]  T. Alford,et al.  Thickness dependence on the thermal stability of silver thin films , 2002 .

[58]  A. Goswami Thin Film Fundamentals , 1996 .

[59]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[60]  G. D. Scott,et al.  The Structure of Evaporated Metal Films and Their Optical Properties , 1950 .

[61]  Joshua A. Taillon,et al.  Near‐Field Optical Properties of Fully Alloyed Noble Metal Nanoparticles , 2017 .

[62]  P. Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[63]  Eric E Fullerton,et al.  Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. , 2014, Nature nanotechnology.

[64]  R. Williams,et al.  Ultrasmooth silver thin films deposited with a germanium nucleation layer. , 2009, Nano letters.

[65]  K. Kjaer,et al.  Integrated optical components utilizing long-range surface plasmon polaritons , 2005, Journal of Lightwave Technology.