Development of radiometric system models for performance comparison of proposed instruments

Radiometric models have been used to optimize instrument design or evaluate impacts of changes to the design during integration and test. Tradeoffs such as spectral and spatial resolution, telescope and spectrometer temperature, aperture, f/No., integration time, optics and filter transmissions, and so forth can be quickly changed to evaluate changes to the signal/noise ratio or other performance metrics. An alternative use of such models is to identify promising instrument proposals for further study. A series of models were constructed to evaluate general instrument designs as an illustration of this process. These models included two grating spectrometers and a spatially modulated interferometer. All were given a common set of radiometric inputs and telescope optical prescription. Result of the modeling illustrate the performance differences between instrument types, although signal/noise predictions should be evaluated along with other parameters such as manufacturability, precision of calibration, and so forth. Such modeling allows instrument developers to demonstrate to potential customers improvements in their instruments, and the advantages of their product over other instruments for a specific application. If a common set of inputs is used for the different instrument models, this technique gives customers one metric with which to evaluate the disparate proposals.