Convergent and conservative schemes for nonclassical solutions based on kinetic relations
暂无分享,去创建一个
Benjamin Boutin | Philippe G. LeFloch | Christophe Chalons | C. Chalons | P. LeFloch | F. Lagoutière | B. Boutin | Frederic Lagoutiere | Benjamin Boutin
[1] Philippe G. LeFloch,et al. Non-classical Riemann solvers with nucleation , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[2] Christophe Chalons. Transport-equilibrium schemes for computing nonclassical shocks. Scalar conservation laws , 2008 .
[3] M. Thanh,et al. Properties of rankine-hugoniot curves for van der Waals fluids , 2003 .
[4] P. LeFloch,et al. Diffusive-dispersive traveling waves and kinetic relations III. An hyperbolic model of elastodynamics , 2001, ANNALI DELL UNIVERSITA DI FERRARA.
[5] J. K. Knowles,et al. Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids , 1991 .
[6] Thomas Y. Hou,et al. A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics , 1999 .
[7] M. Thanh,et al. Non-classical Riemann solvers and kinetic relations. II. An hyperbolic–elliptic model of phase-transition dynamics , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[8] Frédéric Lagoutière,et al. Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .
[9] M. Slemrod. A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase , 1989 .
[10] C. Rohde,et al. THE SHARP-INTERFACE APPROACH FOR FLUIDS WITH PHASE CHANGE: RIEMANN PROBLEMS AND GHOST FLUID TECHNIQUES , 2007 .
[11] Michael Shearer,et al. Undercompressive Shocks for a System of Hyperbolic Conservation Laws with Cubic Nonlinearity , 1999 .
[12] Philippe G. LeFloch,et al. Computing undercompressive waves with the random choice scheme. Nonclassical shock waves , 2003 .
[13] Christophe Chalons. Numerical Approximation of a Macroscopic Model of Pedestrian Flows , 2007, SIAM J. Sci. Comput..
[14] P. LeFloch,et al. Diffusive–dispersive travelling waves and kinetic relations V. Singular diffusion and nonlinear dispersion , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[15] M. Thanh,et al. Nonclassical Riemann solvers and kinetic relations I. A nonconvex hyperbolic model of phase transitions , 2001 .
[16] P. LeFloch,et al. Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .
[17] Philippe Le Floch,et al. Propagating phase boundaries: Formulation of the problem and existence via the Glimm method , 1993 .
[18] Philippe G. LeFloch,et al. Nonclassical Shocks and Kinetic Relations: Strictly Hyperbolic Systems , 2000, SIAM J. Math. Anal..
[19] Bruno Després,et al. Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..
[20] Lev Truskinovsky,et al. Kinks versus Shocks , 1993 .
[21] Philippe G. LeFloch,et al. A fully discrete scheme for diffusive-dispersive conservation laws , 2001, Numerische Mathematik.
[22] Christophe Chalons,et al. Transport-equilibrium schemes for computing nonclassical shocks , 2006 .
[23] Philippe G. LeFloch. Propagating phase boundaries: formulation of the problem and existence via the Glimm scheme , 2007 .
[24] B. Hayes,et al. Non-Classical Shocks and Kinetic Relations: Scalar Conservation Laws , 1997 .
[25] M. Shearer,et al. The Riemann problem for a system of conservation laws of mixed type with a cubic nonlinearity , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[26] Philippe G. LeFloch,et al. Why many theories of shock waves are necessary: Kinetic functions, equivalent equations, and fourth-order models , 2007, J. Comput. Phys..
[27] J. K. Knowles,et al. Kinetic relations and the propagation of phase boundaries in solids , 1991 .
[28] C. Rohde,et al. Computation of dynamical phase transitions in solids , 2006 .
[29] M. Slemrod. Admissibility criteria for propagating phase boundaries in a van der Waals fluid , 1983 .
[30] Philippe G. LeFloch,et al. High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks , 2000, SIAM J. Numer. Anal..
[31] J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .
[32] Haitao Fan,et al. The Riemann Problem for Systems of Conservation Laws of Mixed Type , 1993 .
[33] Frédéric Lagoutière,et al. Stability of reconstruction schemes for scalar hyperbolic conservations laws , 2008 .
[34] C. Chalons,et al. High-order entropy-conservative schemes and kinetic relations for van der Waals fluids , 2001 .
[35] Thomas Y. Hou,et al. Computational Methods for Propagating Phase Boundaries , 1996 .
[36] L. Truskinovskii,et al. Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .
[37] B. Hayes,et al. Nonclassical Shocks and Kinetic Relations: Finite Difference Schemes , 1998 .
[38] J. E. Dunn,et al. Institute for Mathematics and Its Applicatiotrs , 2022 .
[39] P. LeFloch,et al. Diffusive-dispersive travelling waves and kinetic relations. II A hyperbolic–elliptic model of phase-transition dynamics , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.