Convergent and conservative schemes for nonclassical solutions based on kinetic relations

We propose a new numerical approach to compute nonclassical solutions to hyperbolic conservation laws. The class of finite difference schemes presented here is fully conservative and keep nonclassical shock waves as sharp interfaces, contrary to standard finite difference schemes. The main challenge is to achieve, at the discretization level, a consistency property with respect to a prescribed kinetic relation. The latter is required for the selection of physically meaningful nonclassical shocks. Our method is based on a reconstruction technique performed in each computational cell that may contain a nonclassical shock. To validate this approach, we establish several consistency and stability properties, and we perform careful numerical experiments. The convergence of the algorithm toward the physically meaningful solutions selected by a kinetic relation is demonstrated numerically for several test cases, including concave-convex as well as convex-concave flux-functions.

[1]  Philippe G. LeFloch,et al.  Non-classical Riemann solvers with nucleation , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  Christophe Chalons Transport-equilibrium schemes for computing nonclassical shocks. Scalar conservation laws , 2008 .

[3]  M. Thanh,et al.  Properties of rankine-hugoniot curves for van der Waals fluids , 2003 .

[4]  P. LeFloch,et al.  Diffusive-dispersive traveling waves and kinetic relations III. An hyperbolic model of elastodynamics , 2001, ANNALI DELL UNIVERSITA DI FERRARA.

[5]  J. K. Knowles,et al.  Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids , 1991 .

[6]  Thomas Y. Hou,et al.  A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics , 1999 .

[7]  M. Thanh,et al.  Non-classical Riemann solvers and kinetic relations. II. An hyperbolic–elliptic model of phase-transition dynamics , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  Frédéric Lagoutière,et al.  Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .

[9]  M. Slemrod A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase , 1989 .

[10]  C. Rohde,et al.  THE SHARP-INTERFACE APPROACH FOR FLUIDS WITH PHASE CHANGE: RIEMANN PROBLEMS AND GHOST FLUID TECHNIQUES , 2007 .

[11]  Michael Shearer,et al.  Undercompressive Shocks for a System of Hyperbolic Conservation Laws with Cubic Nonlinearity , 1999 .

[12]  Philippe G. LeFloch,et al.  Computing undercompressive waves with the random choice scheme. Nonclassical shock waves , 2003 .

[13]  Christophe Chalons Numerical Approximation of a Macroscopic Model of Pedestrian Flows , 2007, SIAM J. Sci. Comput..

[14]  P. LeFloch,et al.  Diffusive–dispersive travelling waves and kinetic relations V. Singular diffusion and nonlinear dispersion , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  M. Thanh,et al.  Nonclassical Riemann solvers and kinetic relations I. A nonconvex hyperbolic model of phase transitions , 2001 .

[16]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[17]  Philippe Le Floch,et al.  Propagating phase boundaries: Formulation of the problem and existence via the Glimm method , 1993 .

[18]  Philippe G. LeFloch,et al.  Nonclassical Shocks and Kinetic Relations: Strictly Hyperbolic Systems , 2000, SIAM J. Math. Anal..

[19]  Bruno Després,et al.  Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..

[20]  Lev Truskinovsky,et al.  Kinks versus Shocks , 1993 .

[21]  Philippe G. LeFloch,et al.  A fully discrete scheme for diffusive-dispersive conservation laws , 2001, Numerische Mathematik.

[22]  Christophe Chalons,et al.  Transport-equilibrium schemes for computing nonclassical shocks , 2006 .

[23]  Philippe G. LeFloch Propagating phase boundaries: formulation of the problem and existence via the Glimm scheme , 2007 .

[24]  B. Hayes,et al.  Non-Classical Shocks and Kinetic Relations: Scalar Conservation Laws , 1997 .

[25]  M. Shearer,et al.  The Riemann problem for a system of conservation laws of mixed type with a cubic nonlinearity , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  Philippe G. LeFloch,et al.  Why many theories of shock waves are necessary: Kinetic functions, equivalent equations, and fourth-order models , 2007, J. Comput. Phys..

[27]  J. K. Knowles,et al.  Kinetic relations and the propagation of phase boundaries in solids , 1991 .

[28]  C. Rohde,et al.  Computation of dynamical phase transitions in solids , 2006 .

[29]  M. Slemrod Admissibility criteria for propagating phase boundaries in a van der Waals fluid , 1983 .

[30]  Philippe G. LeFloch,et al.  High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks , 2000, SIAM J. Numer. Anal..

[31]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[32]  Haitao Fan,et al.  The Riemann Problem for Systems of Conservation Laws of Mixed Type , 1993 .

[33]  Frédéric Lagoutière,et al.  Stability of reconstruction schemes for scalar hyperbolic conservations laws , 2008 .

[34]  C. Chalons,et al.  High-order entropy-conservative schemes and kinetic relations for van der Waals fluids , 2001 .

[35]  Thomas Y. Hou,et al.  Computational Methods for Propagating Phase Boundaries , 1996 .

[36]  L. Truskinovskii,et al.  Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .

[37]  B. Hayes,et al.  Nonclassical Shocks and Kinetic Relations: Finite Difference Schemes , 1998 .

[38]  J. E. Dunn,et al.  Institute for Mathematics and Its Applicatiotrs , 2022 .

[39]  P. LeFloch,et al.  Diffusive-dispersive travelling waves and kinetic relations. II A hyperbolic–elliptic model of phase-transition dynamics , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.