Infinite horizon forward–backward stochastic differential equations

A class of systems of infinite horizon forward-backward stochastic differential equations is investigated. Under some monotonicity assumptions, the existence and uniqueness results are established by means of a homotopy method. The global exponential asymptotical stability is also obtained. A comparison theorem is given.

[1]  S. Peng,et al.  Solution of forward-backward stochastic differential equations , 1995 .

[2]  Shige Peng,et al.  Probabilistic interpretation for systems of quasilinear parabolic partial differential equations , 1991 .

[3]  U. Haussmann General necessary conditions for optimal control of stochastic systems , 1976 .

[4]  Larry G. Epstein,et al.  Asset Pricing with Stochastic Differential Utility , 1992 .

[5]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[6]  Alain Bensoussan,et al.  Stochastic maximum principle for distributed parameter systems , 1983 .

[7]  S. Peng,et al.  Backward stochastic differential equations and quasilinear parabolic partial differential equations , 1992 .

[8]  A. Bensoussan Perturbation Methods in Optimal Control , 1988 .

[9]  F. Antonelli,et al.  Backward-Forward Stochastic Differential Equations , 1993 .

[10]  S. Mitter Lectures on nonlinear filtering and stochastic control , 1982 .

[11]  H. Kushner Necessary conditions for continuous parameter stochastic optimization problems , 1972 .

[12]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[13]  P. Lions,et al.  PDE solutions of stochastic differential utility , 1992 .

[14]  S. Peng,et al.  Fully Coupled Forward-Backward Stochastic Differential Equations and Applications to Optimal Control , 1999 .

[15]  J. Bismut An Introductory Approach to Duality in Optimal Stochastic Control , 1978 .

[16]  A. Bensoussan,et al.  Singular perturbations in optimal control problems , 1986 .

[17]  Larry G. Epstein,et al.  Stochastic differential utility , 1992 .

[18]  J. Yong Finding adapted solutions of forward–backward stochastic differential equations: method of continuation , 1997 .

[19]  D. Duffie,et al.  Black's Consol Rate Conjecture , 1995 .

[20]  S. Peng A general stochastic maximum principle for optimal control problems , 1990 .

[21]  J. Yong,et al.  Solving forward-backward stochastic differential equations explicitly — a four step scheme , 1994 .