Observation of inertial energy cascade in interplanetary space plasma.

Direct evidence for the presence of an inertial energy cascade, the most characteristic signature of hydromagnetic turbulence (MHD), is observed in the solar wind by the Ulysses spacecraft. After a brief rederivation of the equivalent of Yaglom's law for MHD turbulence, a linear relation is indeed observed for the scaling of mixed third-order structure functions involving Elsässer variables. This experimental result firmly establishes the turbulent character of low-frequency velocity and magnetic field fluctuations in the solar wind plasma.

[1]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[2]  T. Horbury,et al.  Properties of Magnetohydrodynamic Turbulence in the Solar Wind as Observed , 1995 .

[3]  T. Horbury,et al.  Evolution of magnetic field fluctuations in high‐speed solar wind streams: Ulysses and Helios observations , 2001 .

[4]  Gómez,et al.  Exact relationship for third-order structure functions in helical flows , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  J. Phillips,et al.  Solar wind corotating stream interaction regions out of the ecliptic plane: Ulysses , 1995 .

[6]  E. Smith,et al.  Ulysses above the sun's south pole: an introduction. , 1995, Science.

[7]  Pierluigi Veltri,et al.  Fully developed anisotropic hydromagnetic turbulence in interplanetary space , 1980 .

[8]  P. Coleman Turbulence, viscosity, and dissipation in the solar-wind plasma , 1968 .

[9]  B. Bavassano,et al.  Evidence for long period Alfvén waves in the inner solar system , 1985 .

[10]  Vincenzo Carbone,et al.  The Solar Wind as a Turbulence Laboratory , 2005 .

[11]  A. Pouquet,et al.  On the validity of a nonlocal approach for MHD turbulence , 1999 .

[12]  Persistence of small-scale anisotropy of magnetic turbulence as observed in the solar wind , 2006, physics/0607128.

[13]  Tongming Zhou,et al.  Turbulent energy scale budget equations in a fully developed channel flow , 2001, Journal of Fluid Mechanics.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Eckart Marsch,et al.  MHD structures, waves and turbulence in the solar wind: Observations and theories , 1995 .

[16]  Marc Rabaud,et al.  Decaying grid-generated turbulence in a rotating tank , 2005 .

[17]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[18]  Charles Meneveau,et al.  Statistics of filtered velocity in grid and wake turbulence , 2000 .

[19]  Dieter Biskamp,et al.  Statistical anisotropy of magnetohydrodynamic turbulence. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  O. Chkhetiani On the third moments in helical turbulence , 1996 .

[21]  Fabien Anselmet,et al.  Analogy between predictions of Kolmogorov and Yaglom , 1997, Journal of Fluid Mechanics.

[22]  Charles N Baroud,et al.  Anomalous self-similarity in a turbulent rapidly rotating fluid. , 2002, Physical review letters.

[23]  A. Pouquet,et al.  Dynamical length scales for turbulent magnetized flows , 1998 .

[24]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[25]  T. Horbury,et al.  The Heliospheric Magnetic Field Over the South Polar Region of the Sun , 1995, Science.