Morphology-dependent low macroscopic field emission properties of titania/titanate nanorods synthesized by alkali-controlled hydrothermal treatment of a metallic Ti surface

One-dimensional (1D) and two-dimensional (2D) titania/titanate nanostructures are fabricated directly on a self-source metallic titanium (Ti) surface via in situ surface re-construction of a Ti substrate using potassium hydroxide (KOH) under a hydrothermal (HT) condition. The effect of temperature and the concentration of KOH on the variations in morphology and titania-to-titanate phase changes are studied and explained in detail. A growth model is proposed for the formation process of the platelet-to-nanorod conversion mechanism. The field emission (FE) properties of titania/titanate nanostructures are studied, and the effects of the morphologies (such as 1D nanorods, 2D nanoplatelets, and a mixture of 1D nanorods and 2D platelets) on the FE properties of the samples are investigated. The samples depict a reasonable low turn-on field and emission stability. The FE mechanism is observed to follow standard Fowler-Nordheim (FN) electron tunneling. The geometrical field enhancement factor (β) is measured to be very high, and is compared with theoretical values calculated from various existing models to explore the feasibility of these models. The surface modification of metallic Ti by a simple non-lithographic bottom-up method and the low-macroscopic FE properties can provide a potential alternative to field emission displays for low-power panel technology.

[1]  S. Chang,et al.  Enhanced Field Emission of ${\rm TiO}_{2}$ Nanowires With UV Illumination , 2014, IEEE Electron Device Letters.

[2]  K. Chattopadhyay,et al.  Low-macroscopic field emission from fibrous ZnO thin film prepared by catalyst-free solution route , 2004 .

[3]  Richard G. Forbes,et al.  Low-macroscopic-field electron emission from carbon films and other electrically nanostructured heterogeneous materials: hypotheses about emission mechanism ☆ , 2001 .

[4]  Chen Xu,et al.  Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. , 2012, Journal of the American Chemical Society.

[5]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[6]  G. Shen,et al.  Thickness-dependent photocatalytic performance of ZnO nanoplatelets. , 2006, The journal of physical chemistry. B.

[7]  J. Archana,et al.  Hydrothermal growth of monodispersed rutile TiO2 nanorods and functional properties , 2013 .

[8]  Richard G. Forbes,et al.  Refining the application of Fowler–Nordheim theory , 1999 .

[9]  J. Pascual,et al.  Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .

[10]  T Mizutani,et al.  Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors , 2006, Nanotechnology.

[11]  S. Joo,et al.  Field emission characterization of vertically oriented uniformly grown nickel nanorod arrays on metal-coated silicon substrate , 2010 .

[12]  M. Shirai,et al.  Application of Titania Nanotubes to a Dye-sensitized Solar Cell , 2002 .

[13]  Yongchang Fan,et al.  New Field Emission Technologies , 2012, Handbook of Visual Display Technology.

[14]  Tohru Sekino,et al.  Titania Nanotubes Prepared by Chemical Processing , 1999 .

[15]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[16]  N. Selvamurugan,et al.  The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response , 2009, Nanotechnology.

[17]  Seeram Ramakrishna,et al.  Improved Electron Diffusion Coefficient in Electrospun TiO2 Nanowires , 2009 .

[18]  Huibiao Liu,et al.  Aggregate nanostructures of organic molecular materials. , 2010, Accounts of chemical research.

[19]  A. Zunger Spontaneous Atomic Ordering in Semiconductor Alloys: Causes, Carriers, and Consequences , 1997 .

[20]  Dong‐sheng Li,et al.  Aligned rutile TiO2 nanorods: Facile synthesis and field emission , 2013 .

[21]  C. Che,et al.  Self‐Assembly of Functional Molecules into 1D Crystalline Nanostructures , 2015, Advanced materials.

[22]  Wei-min Liu,et al.  Field Emission from TiO$_2$/Ti Nanotube Array Films Modified \with Carbon Nanotubes , 2009 .

[23]  S. Srivastava,et al.  Field emission properties of carbon nanostructures: A review , 2007, 2007 International Workshop on Physics of Semiconductor Devices.

[24]  O. Tan,et al.  SnO2 nanorod arrays: low temperature growth, surface modification and field emission properties. , 2012, Nanoscale.

[25]  Jingshen Wu,et al.  The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend , 2000 .

[26]  S. Purcell,et al.  Physical properties of individual anatase TiO2 nanowires investigated by field emission in a transmission electron microscope , 2012 .

[27]  Ying Zhou,et al.  Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. , 2011, Angewandte Chemie.

[28]  Dong‐sheng Li,et al.  Field emission property of carbon-doped TiO2 nanotube arrays with controllable doping content of carbon , 2012 .

[29]  G. Lu,et al.  Electron field emission of a nitrogen-doped TiO2 nanotube array , 2008, Nanotechnology.

[30]  Hongkun Park,et al.  Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. , 2002, Journal of the American Chemical Society.

[31]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[32]  Hong-Yu Chen,et al.  Low-Resistance Electrical Contact to Carbon Nanotubes With Graphitic Interfacial Layer , 2012, IEEE Transactions on Electron Devices.

[33]  Gaurav Mittal,et al.  Recent progress in nanostructured next-generation field emission devices , 2014 .

[34]  K. Chattopadhyay,et al.  Morphology control of rutile TiO2 hierarchical architectures and their excellent field emission properties , 2012 .

[35]  S. Joo,et al.  Barrier-oxide layer engineering of TiO2 nanotube arrays to get single- and multi-stage Y-branched nanotubes: Effect of voltage ramping and electrolyte conductivity , 2015 .

[36]  Qian Wang,et al.  Electrical contacts to carbon nanotubes down to 1nm in diameter , 2005 .

[37]  R. Gomer,et al.  Field emission and field ionization in condensed phases , 1972 .

[38]  B. Chi,et al.  Synthesis of TiO2-based nanotube on Ti substrate by hydrothermal treatment. , 2007, Journal of nanoscience and nanotechnology.

[39]  A. I. Gavrilov,et al.  Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. , 2006, The journal of physical chemistry. B.

[40]  R. Waser,et al.  Advanced dielectrics: Bulk ceramics and thin films , 1991 .

[41]  Zhengjun Zhang,et al.  NiO films consisting of vertically aligned cone-shaped NiO rods , 2006 .

[42]  U. Valdré,et al.  The enhancement factor and the characterization of amorphous carbon field emitters , 2001 .

[43]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[44]  Di Li,et al.  Long‐Term Antimicrobial Effect of Silicon Nanowires Decorated with Silver Nanoparticles , 2010, Advanced materials.

[45]  J. Redinger,et al.  Ab initio studies of H2O adsorption on the TiO2(110) rutile surface , 1998 .

[46]  U. Valdrè,et al.  Microscopy and computational modelling to elucidate the enhancement factor for field electron emitters , 2001 .

[47]  Tzu-Ching Lin,et al.  Aggregated TiO2 nanotubes with high field emission properties , 2014 .

[48]  Y. Ishikawa,et al.  Temporal field emission current stability and fluctuations from graphene films , 2010 .

[49]  J. Gambino,et al.  Silicides and ohmic contacts , 1998 .

[50]  R. Forbes,et al.  Some comments on models for field enhancement. , 2003, Ultramicroscopy.

[51]  T. Kamiya,et al.  Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction , 2006 .

[52]  K. Manzoor,et al.  Osteointegration of titanium implant is sensitive to specific nanostructure morphology. , 2012, Acta biomaterialia.

[53]  Jintae Lee,et al.  Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability , 2015, Nanotechnology.

[54]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[55]  A. K. Tyagi,et al.  Enhancement of electron field emission properties of TiO2−x nanoplatelets by N-doping , 2012 .

[56]  L. Schlapbach,et al.  Field emitted electron energy distribution from nitrogen-containing diamondlike carbon , 1997 .

[57]  J. Robertson Amorphous carbon cathodes for field emission display , 1997 .

[58]  S. Molloi,et al.  Effect of TiO2 nanotube parameters on field emission properties , 2010, Nanotechnology.

[59]  Klaus Kern,et al.  Scanning field emission from patterned carbon nanotube films , 2000 .

[60]  Wen He,et al.  Microwave-assisted synthesis of anatase TiO2 nanorods with mesopores , 2007, Nanotechnology.

[61]  H. Strunk,et al.  Nitrogen Photofixation at Nanostructured Iron Titanate Films. , 2001, Angewandte Chemie.

[62]  A. R. Armstrong,et al.  TiO2‐B Nanowires , 2004 .

[63]  R. Ruoff,et al.  Possibilities for graphene for field emission: modeling studies using the BEM , 2008 .

[64]  Y. Nishida,et al.  K2O · 6TiO2 whisker-reinforced aluminium composite by a powder metallurgical method , 1987 .

[65]  Gengmin Zhang,et al.  TiO₂ nanotip arrays: anodic fabrication and field-emission properties. , 2012, ACS applied materials & interfaces.

[66]  A. K. Tyagi,et al.  Enhanced Field Emission Properties of Electrochemically Synthesized Self-Aligned Nitrogen-Doped TiO2 Nanotube Array Thin Films , 2012 .

[67]  Rose Amal,et al.  In Situ Growth of a ZnO Nanowire Network within a TiO2 Nanoparticle Film for Enhanced Dye‐Sensitized Solar Cell Performance , 2012, Advanced materials.

[68]  Na Wang,et al.  Nanostructured Sheets of TiO Nanobelts for Gas Sensing and Antibacterial Applications , 2008 .

[69]  M. Mozetič,et al.  Titanium nanostructures for biomedical applications , 2015, Nanotechnology.

[70]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[71]  J. Yao,et al.  The fabrication of TiO2 nanorods from TiO2 nanoparticles by organic protection assisted template method , 2009, Nanotechnology.

[72]  Wei-min Liu,et al.  Field emission from the structure of well-aligned TiO2/Ti nanotube arrays , 2009 .

[73]  Patrik Schmuki,et al.  Self-organized TiO2 nanotube layers as highly efficient photocatalysts. , 2007, Small.

[74]  Enge Wang,et al.  Universal field-emission model for carbon nanotubes on a metal tip , 2002 .

[75]  H. Imai,et al.  Direct preparation of anatase TiO2 nanotubes in porous alumina membranes , 1999 .

[76]  Low-macroscopic field emission properties of wide bandgap copper aluminium oxide nanoparticles for low-power panel applications. , 2011, Nanotechnology.

[77]  Large field enhancement at electrochemically grown quasi-1D Ni nanostructures with low-threshold cold-field electron emission. , 2011, Nanotechnology.

[78]  Hong-Yan Chen,et al.  Dye-sensitized solar cells based on a double layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance , 2012 .

[79]  Hua-ming Li,et al.  Microwave-assisted synthesis of barium tungstate nanosheets and nanobelts by using polymer PVP micelle as templates , 2007 .

[80]  R. H. Good,et al.  Thermionic Emission, Field Emission, and the Transition Region , 1956 .

[81]  T. Hotokebuchi,et al.  Plate, wire, mesh, microsphere, and microtube composed of sodium titanate nanotubes on a titanium metal template. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[82]  P. Chu,et al.  Synthesis and field emission properties of rutile TiO2 nanowires arrays grown directly on a Ti metal self-source substrate. , 2009, Journal of nanoscience and nanotechnology.

[83]  F. Zhou,et al.  Single crystal TiO2 nanorods: Large-scale synthesis and field emission , 2012 .

[84]  Yichun Liu,et al.  Hydrothermal Growth of Layered Titanate Nanosheet Arrays on Titanium Foil and Their Topotactic Transformation to Heterostructured TiO2 Photocatalysts , 2011 .

[85]  Dong‐sheng Li,et al.  Electron field emission from the semimetallic TiO2 nanotube arrays , 2013 .

[86]  P. Umek,et al.  The influence of the reaction temperature on the morphology of sodium titanate 1D nanostructures and their thermal stability. , 2007, Journal of Nanoscience and Nanotechnology.

[87]  M. Maeda,et al.  Bioactive Titanium Oxide-Based Nanostructures Prepared by One-Step Hydrothermal Anodization , 2012 .