Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation

[1]  E. Elinav,et al.  The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury , 2016, Science.

[2]  Sean-Paul Nuccio,et al.  Mucosal immunity to pathogenic intestinal bacteria , 2016, Nature Reviews Immunology.

[3]  M. Teixeira,et al.  Evaluation of mucositis induced by irinotecan after microbial colonization in germ-free mice. , 2015, Microbiology.

[4]  Robert A. Carter,et al.  Critical Role for the DNA Sensor AIM2 in Stem Cell Proliferation and Cancer , 2015, Cell.

[5]  Brianne R. Barker,et al.  Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt , 2015, Nature Medicine.

[6]  G. Barber,et al.  Diverse roles of STING-dependent signaling on the development of cancer , 2015, Oncogene.

[7]  R. Means,et al.  Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response , 2014, Nature.

[8]  Xuetao Cao,et al.  Cell-free Tumor Microparticle Vaccines Stimulate Dendritic Cells via cGAS/STING Signaling , 2014, Cancer Immunology Research.

[9]  G. Barber,et al.  Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. , 2014, Current opinion in immunology.

[10]  R. Weichselbaum,et al.  STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. , 2014, Immunity.

[11]  Ying Wang,et al.  STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. , 2014, Immunity.

[12]  G. Barber,et al.  Inflammation-driven carcinogenesis is mediated through STING , 2014, Nature Communications.

[13]  N. Bottini,et al.  Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis. , 2014, The Journal of clinical investigation.

[14]  B. Ryffel,et al.  Inflammasome activation is reactive oxygen species dependent and mediates irinotecan-induced mucositis through IL-1β and IL-18 in mice. , 2014, The American journal of pathology.

[15]  M. Teixeira,et al.  Targeted inhibition of IL‐18 attenuates irinotecan‐induced intestinal mucositis in mice , 2014, British journal of pharmacology.

[16]  Olivier Elemento,et al.  Double-stranded DNA in exosomes: a novel biomarker in cancer detection , 2014, Cell Research.

[17]  M. Teixeira,et al.  IL-33 targeting attenuates intestinal mucositis and enhances effective tumour chemotherapy in mice , 2014, Mucosal Immunology.

[18]  Lynda Chin,et al.  Identification of Double-stranded Genomic DNA Spanning All Chromosomes with Mutated KRAS and p53 DNA in the Serum Exosomes of Patients with Pancreatic Cancer* , 2014, The Journal of Biological Chemistry.

[19]  S. Melgar,et al.  Pellino3 ubiquitinates RIP2 and mediates Nod2-induced signaling and protective effects in colitis , 2013, Nature Immunology.

[20]  L. Zitvogel,et al.  Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. , 2013, Immunity.

[21]  L. Bracci,et al.  Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer , 2013, Cell Death and Differentiation.

[22]  B. Bao,et al.  Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review , 2013, Cancer and Metastasis Reviews.

[23]  E. Latz,et al.  Activation and regulation of the inflammasomes , 2013, Nature Reviews Immunology.

[24]  Danny W. Wilson,et al.  Cell-Cell Communication between Malaria-Infected Red Blood Cells via Exosome-like Vesicles , 2013, Cell.

[25]  Sang-Uk Seo,et al.  Role of the gut microbiota in immunity and inflammatory disease , 2013, Nature Reviews Immunology.

[26]  A. Gritzapis,et al.  Chemotherapy ± Cetuximab Modulates Peripheral Immune Responses in Metastatic Colorectal Cancer , 2013, Oncology.

[27]  P. Vandenabeele,et al.  Immunogenic cell death and DAMPs in cancer therapy , 2012, Nature Reviews Cancer.

[28]  G. Barber,et al.  STING manifests self DNA-dependent inflammatory disease , 2012, Proceedings of the National Academy of Sciences.

[29]  L. Zitvogel,et al.  Inflammasomes in carcinogenesis and anticancer immune responses , 2012, Nature Immunology.

[30]  A. Gritzapis,et al.  Combined treatment with Bevacizumab and standard chemotherapy restores abnormal immune parameters in advanced colorectal cancer patients , 2012, Investigational New Drugs.

[31]  F. Di Virgilio,et al.  Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice , 2011, Science.

[32]  Hamid Cheshmi Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers , 2011 .

[33]  P. Vandenabeele,et al.  DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[34]  S. Pomeroy,et al.  Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. , 2011, Nature communications.

[35]  C. Weber,et al.  Microparticles: Protagonists of a Novel Communication Network for Intercellular Information Exchange , 2010, Circulation research.

[36]  J. Pignon,et al.  Immunogenic death of colon cancer cells treated with oxaliplatin , 2010, Oncogene.

[37]  S. Bloor,et al.  The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria , 2009, Nature Immunology.

[38]  D. Green,et al.  Immunogenic and tolerogenic cell death , 2009, Nature Reviews Immunology.

[39]  G. Superti-Furga,et al.  An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome , 2009, Nature Immunology.

[40]  E. Alnemri,et al.  AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA , 2009, Nature.

[41]  Daniel R. Caffrey,et al.  AIM2 recognizes cytosolic dsDNA and forms a caspase-1 activating inflammasome with ASC , 2009, Nature.

[42]  F. Cunha,et al.  Role of cytokines (TNF-α, IL-1β and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide , 2008, Cancer Chemotherapy and Pharmacology.

[43]  N. Salzman,et al.  Enteric Salmonellosis Disrupts the Microbial Ecology of the Murine Gastrointestinal Tract , 2007, Infection and Immunity.

[44]  Laurence Zitvogel,et al.  Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy , 2007, Nature Medicine.

[45]  J. Lötvall,et al.  Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells , 2007, Nature Cell Biology.

[46]  S. Brand,et al.  Interleukin 31 mediates MAP kinase and STAT1/3 activation in intestinal epithelial cells and its expression is upregulated in inflammatory bowel disease , 2007, Gut.

[47]  G. Parmiani,et al.  Tumor-released microvesicles as vehicles of immunosuppression. , 2007, Cancer research.

[48]  L. Zitvogel,et al.  Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death , 2005, The Journal of experimental medicine.

[49]  Shufeng Zhou,et al.  St. John’s Wort Modulates the Toxicities and Pharmacokinetics of CPT-11 (Irinotecan) in Rats , 2005, Pharmaceutical Research.

[50]  S. Clarke,et al.  Management of chemotherapy-induced nausea, vomiting, oral mucositis, and diarrhoea. , 2005, The Lancet. Oncology.

[51]  J. Ajani,et al.  Recommended guidelines for the treatment of cancer treatment-induced diarrhea. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[52]  Christian Jacques,et al.  Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer , 1998, The Lancet.

[53]  P. Hérait,et al.  High dose-intensity of irinotecan administered every 3 weeks in advanced cancer patients: a feasibility study. , 1997, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[54]  E. Szigethy,et al.  Inflammatory bowel disease. , 2011, Pediatric clinics of North America.

[55]  Patrizia Agostinis,et al.  Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. , 2010, Biochimica et biophysica acta.

[56]  M. Keller,et al.  Thalidomide Inhibits Activation of Caspase-1 , 2009 .

[57]  F. Cunha,et al.  Role of cytokines (TNF-alpha, IL-1beta and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide. , 2008, Cancer chemotherapy and pharmacology.

[58]  L. Zitvogel,et al.  Immune response against dying tumor cells. , 2004, Advances in immunology.

[59]  K. Rock,et al.  Natural endogenous adjuvants , 2004, Springer Seminars in Immunopathology.

[60]  E. Cvitkovic,et al.  Characterisation and clinical management of CPT-11 (irinotecan)-induced adverse events: the European perspective. , 1996, European journal of cancer.

[61]  P. Matzinger Tolerance, danger, and the extended family. , 1994, Annual review of immunology.

[62]  J. Hardcastle,et al.  Colorectal cancer , 1993, Europe Against Cancer European Commission Series for General Practitioners.

[63]  K. Calman,et al.  Immunological Aspects of Cancer Chemotherapy , 1980 .

[64]  O. Mustala [Side-effects of chemotherapeutic agents]. , 1970, Duodecim; laaketieteellinen aikakauskirja.

[65]  The AIM2 inflammasome is critical for innate immunity to , 2022 .