Stabilization of Nanoscale Quasi-Liquid Interfacial Films in Inorganic Materials: A Review and Critical Assessment

Recent observations of three classes of nanometer-thick, disordered, interfacial films in multicomponent inorganic materials are reviewed and critically assessed. The three classes of films are equilibrium-thickness intergranular films (IGFs) in ceramics, their free-surface counterparts, that is, surficial amorphous films (SAFs), and their metallic counterparts. Also briefly reviewed are several related wetting and adsorption phenomena in simpler systems, including premelting in unary systems, prewetting in binary liquids or vapor adsorption on inert walls, and frustrated-complete wetting. Analogous diffuse-interface and force-balance models are discussed with the goal of exploring a unifying thermodynamic framework. In general, the stability of these nanometer-thick interfacial films does not follow bulk phase diagrams. Stabilization of quasi-liquid interfacial films at subeutectic or undersaturation conditions in multicomponent materials can be understood from coupled interfacial premelting and prewetting transitions. More realistic models should include additional interfacial interactions, for example, dispersion and electrostatic forces, and consider the possibility for metastable equilibration. It is suggested that quasi-liquid grain boundary films in binary metallic systems can be used to validate a basic thermodynamic model. These nanoscale interfacial films are technologically important. For example, the short-circuit diffusion that occurs in interface-stabilized, subeutectic, quasi-liquid films explains the long-standing mystery of the solid-state activated sintering mechanism in ceramics, refractory metals, and ice.

[1]  I. Tanaka,et al.  Interpretation of Si-L2,3 Edge Electron Energy Loss Near Edge Structures (ELNES) from Intergranular Glassy Film of Si3N4 Ceramics , 2004 .

[2]  S. Błoński,et al.  Atomistic Structure of Calcium Silicate Intergranular Films in Alumina Studied by Molecular Dynamics Simulations , 2005 .

[3]  W. Kaplan,et al.  Intergranular films at Au-sapphire interfaces , 2006 .

[4]  Doh-Yeon Kim,et al.  Pore-boundary separation behavior during sintering of pure and Bi2O3-doped ZnO ceramics , 2004 .

[5]  R. Lipowsky Surface‐induced order and disorder: Critical phenomena at first‐order phase transitions (invited) , 1984 .

[6]  C. Dwyer,et al.  Three-dimensional organization of rare-earth atoms at grain boundaries in silicon nitride , 2005 .

[7]  T. Radetić,et al.  Observations of interface premelting at grain-boundary precipitates of Pb in Al , 2004 .

[8]  J. C. Hamilton,et al.  Atomistic and lattice model of a grain boundary defaceting phase transition. , 2004, Physical review letters.

[9]  E. Tosatti,et al.  Material surfaces and nanosystems close to the melting temperature , 2005 .

[10]  E. Rabkin,et al.  Penetration of tin and zinc along tilt grain boundaries 43° [100] in Fe-5 at.% Si alloy: Premelting phase transition? , 1991 .

[11]  E. Rabkin,et al.  Wetting and premelting phase transitions in 38° [100] tilt grain boundary in (Fe-12 at.% Si)-Zn alloy in the vicinity of the A2-B2 bulk ordering in Fe-12 at.% Si alloy , 1991 .

[12]  Xiao Feng Zhang,et al.  Short-range order in nanoscale amorphous intergranular films in liquid-phase sintered silicon carbide , 2006 .

[13]  N. Lockington,et al.  The kinetics of metallic activation sintering of tungsten , 1967 .

[14]  H. W. Hayden,et al.  The Activated Sintering of Tungsten with Group VIII Elements , 1963 .

[15]  W. Carter,et al.  Vector-valued phase field model for crystallization and grain boundary formation , 1998 .

[16]  R. M. Cannon,et al.  Statistical analysis of the intergranular film thickness in silicon nitride ceramics , 1993 .

[17]  R. French,et al.  Local optical properties, electron densities, and london dispersion energies of atomically structured grain boundaries. , 2004, Physical review letters.

[18]  H. Kleebe,et al.  Chemistry and inherent viscosity of glasses segregated at grain boundaries of silicon nitride and silicon carbide ceramics , 2000 .

[19]  T. Shaw,et al.  Forces between Aluminum Oxide Grains in a Silicate Melt and Their Effect on Grain Boundary Wetting , 1991 .

[20]  Sung-tag Oh,et al.  Nickel-enhanced grain growth in tungsten wire , 1993 .

[21]  W. Kaplan,et al.  STRUCTURAL ORDER IN LIQUIDS INDUCED BY INTERFACES WITH CRYSTALS , 2006 .

[22]  W. Kaplan,et al.  Equilibrium Amorphous Silicon–Calcium–Oxygen Films at Interfaces in Copper–Alumina Composites Prepared by Melt Infiltration , 2001 .

[23]  J. Hansen,et al.  Wetting transitions of ionic solutions. , 2004, The Journal of chemical physics.

[24]  John S. Wettlaufer,et al.  The physics of premelted ice and its geophysical consequences , 2006 .

[25]  P. Wynblatt,et al.  Wetting and prewetting transitions in Ga-Pb alloys , 1998 .

[26]  R. Suter,et al.  Simulation of spreading of precursing Ag films on Ni(100) , 2002 .

[27]  Lee,et al.  HREM and STEM of intergranular films at zinc oxide varistor grain boundaries , 1998, Journal of microscopy.

[28]  K. Hwang,et al.  Identification of the segregation layer and its effects on the activated sintering and ductility of Ni-doped molybdenum , 2003 .

[29]  Jean Lapujoulade,et al.  The roughening of metal surfaces , 1994 .

[30]  M. Fujimoto,et al.  Microstructures of SrTiO3 Internal Boundary Layer Capacitors During and After Processing and Resultant Electrical Properties , 1985 .

[31]  R. Suter,et al.  Effects of concentration dependent diffusivity on the growth of precursing films of Pb on Cu(1 1 1) , 2001 .

[32]  D. Clarke,et al.  Grain Boundary Phases in a Hot‐Pressed MgO Fluxed Silicon Nitride , 1977 .

[33]  William A. Shelton,et al.  Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions , 2004, Nature.

[34]  H. Orland,et al.  Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation , 1997, cond-mat/9803258.

[35]  D. Clarke On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials , 1987 .

[36]  H. Schmid Identification of intergranular phases in ceramic nanocomposites , 1999, Journal of microscopy.

[37]  R. German,et al.  Enhanced low-temperature sintering of tungsten , 1976 .

[38]  Si-Young Choi,et al.  Sintering kinetics by structural transition at grain boundaries in barium titanate , 2004 .

[39]  P. Gennes,et al.  Spreading of nonvolatile liquids in a continuum picture , 1991 .

[40]  Michael J. Hoffmann,et al.  Adsorption and Wetting Mechanisms at Ceramic Grain Boundaries , 2000 .

[41]  W. Kaplan,et al.  Intergranular films at metal–ceramic interfaces. Part 1 – interface structure and chemistry , 2005 .

[42]  B. Straumal,et al.  Influence of Grain Boundary Phase Transitions on the Properties of Cu-Bi Polycrystals , 2001 .

[43]  P. Becher,et al.  Temperature-Dependent Viscosity of SiREAl-Based Glasses as a Function of N:O and RE:Al Ratios (RE = La, Gd, Y, and Lu) , 2004 .

[44]  S. Stemmer,et al.  Evolution of grain boundary films in liquid phase sintered silicon nitride during high-temperature testing , 1998 .

[45]  R. Brydson,et al.  Influence of CaO-SiO 2 ratio on the chemistry of intergranular films in liquid-phase sintered alumina and implications for rate of erosive wear , 2001 .

[46]  C. Radke,et al.  Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment. , 2002, Advances in colloid and interface science.

[47]  M. Schick,et al.  Systematics of multilayer adsorption phenomena on attractive substrates , 1982 .

[48]  Joon-Hyung Lee,et al.  Observation of intergranular films in BaB2O4 added BaTiO3 ceramics , 2000 .

[49]  Y. Mishin,et al.  Atomic mechanisms of grain boundary diffusion: Low versus high temperatures , 2005 .

[50]  H. Kleebe,et al.  Structure and Viscosity of Grain Boundary in High‐Purity SiAlON Ceramics , 2004 .

[51]  O. Toon,et al.  Infrared characterization of water uptake by low‐temperature Na‐montmorillonite: Implications for Earth and Mars , 2005 .

[52]  L. Gauckler,et al.  Microstructure of cobalt oxide doped sintered ceria solid solutions , 2006 .

[53]  H. Kleebe,et al.  Transmission electron microscopy characterization of a fluorine-doped Si3N4 , 1995 .

[54]  S. Garofalini,et al.  Atomistic structure of calcium silicate intergranular films between prism and Basal planes in silicon nitride: A molecular dynamics study , 2004 .

[55]  Y. Chiang,et al.  Effect of Initial Microstructure on Final Intergranular Phase Distribution in Liquid‐Phase‐Sintered Ceramics , 2004 .

[56]  N. Churaev Surface Forces in Wetting Films , 2003, Advances in colloid and interface science.

[57]  John S. Wettlaufer,et al.  The premelting of ice and its environmental consequences , 1995 .

[58]  R. M. Cannon,et al.  Current Paradigms in Powder Processing , 1978 .

[59]  R. M. Cannon,et al.  The evolution of amorphous grain boundaries during in-situ heating experiments in Lu–Mg doped Si3N4 , 2006 .

[60]  S. Bhattacharyya,et al.  Aspects regarding measurement of thickness of intergranular glassy films , 2006, Journal of microscopy.

[61]  P. Yang,et al.  Metalorganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections , 2003 .

[62]  M. Lance,et al.  The importance of amorphous intergranular films in self-reinforced Si3N4 ceramics , 2000 .

[63]  R. M. Cannon,et al.  Triple line ridging and attachment in high-temperature wetting , 2001 .

[64]  John L. Johnson,et al.  Theoretical modeling of densification during activated solid-state sintering , 1996 .

[65]  L. C. Jonghe,et al.  Thermal Modification of Microstructures and Grain Boundaries in Silicon Carbide , 2003 .

[66]  B. Straumal,et al.  Grain Boundary Phase Transitions and their Influence on Properties of Polycrystals , 2004 .

[67]  A. V. Duin,et al.  Grand canonical Monte Carlo simulations of intergranular glassy films in β silicon nitride , 2006 .

[68]  R. M. Cannon,et al.  Ridging effects on wetting and spreading of liquids on solids , 1998 .

[69]  R. M. Cannon,et al.  Grain Boundary Films in Rare‐Earth‐Glass‐Based Silicon Nitride , 2005 .

[70]  L. C. Jonghe,et al.  Aluminum-containing intergranular phases in hot-pressed silicon carbide , 2003 .

[71]  K. Wolski,et al.  Grain boundary penetration of nickel by liquid bismuth as a film of nanometric thickness , 2000 .

[72]  L. Falk Microstructural development during liquid phase sintering of silicon carbide ceramics , 1997 .

[73]  Jian Luo,et al.  Segregation-induced grain boundary premelting in nickel-doped tungsten , 2005 .

[74]  Roger H. French,et al.  Thin Glass Film between Ultrafine Conductor Particles in Thick-Film Resistors , 1994 .

[75]  Y. Chiang,et al.  Model experiment on thermodynamic stability of retained intergranular amorphous films , 2005 .

[76]  J. Chevalier,et al.  Effect of cooling rate on the location and chemistry of glassy phases in silica-doped 3Y-TZP ceramics , 2005 .

[77]  S. Pennycook,et al.  Atomic ordering at an amorphous/crystal interface , 2006 .

[78]  Michael J. Hoffmann,et al.  Influence of Secondary Phase Chemistry on Grain Boundary Film Thickness in Silicon Nitride / Einfluß der Sekundärphasenchemie auf die Korngrenzfilmdicke in Silicumnitrid , 1992 .

[79]  J. Frenken,et al.  Observation of surface melting. , 1985, Physical review letters.

[80]  R. M. Cannon,et al.  Nanometer-thick surficial films in oxides as a case of prewetting. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[81]  V. Jayaram,et al.  Detection of Thin Intergranular Cobalt Layers in WC‐Co Composites by Lattice Imaging , 1983 .

[82]  R. M. Cannon,et al.  Pressure-balance and diffuse-interface models for surficial amorphous films , 2006 .

[83]  F. Ernst,et al.  Structure and Composition of Grain Boundaries in Ceramics , 1999 .

[84]  Y. Chiang,et al.  Origin of Solid‐State Activated Sintering in Bi2O3‐Doped ZnO , 1999 .

[85]  Bonn,et al.  First-order and critical wetting of alkanes on water , 2000, Physical review letters.

[86]  J. Wettlaufer Impurity Effects in the Premelting of Ice , 1999 .

[87]  Zhong Lin Wang,et al.  Metal−Semiconductor Zn−ZnO Core−Shell Nanobelts and Nanotubes , 2004 .

[88]  S. Garofalini,et al.  Determining the radial pair-distribution function within intergranular amorphous films by numerical nanodiffraction. , 2006, Ultramicroscopy.

[89]  J. Frenken,et al.  Observation of surface-initiated melting. , 1986, Physical review. B, Condensed matter.

[90]  Kikuchi,et al.  Grain boundaries with impurities in a two-dimensional lattice-gas model. , 1987, Physical review. B, Condensed matter.

[91]  P. Gennes Wetting: statics and dynamics , 1985 .

[92]  X. Yian,et al.  Spontaneous Monolayer Dispersion of Oxides and Salts onto Surfaces of Supports: Applications to Heterogeneous Catalysis , 1990 .

[93]  R. M. Cannon,et al.  Abnormal Grain Growth in Alumina: Synergistic Effects of Yttria and Silica , 2003 .

[94]  Bonn,et al.  Prewetting in a binary liquid mixture. , 1993, Physical review letters.

[95]  W. Kaplan,et al.  Intergranular films in metal-ceramic composites and the promotion of metal particle occlusion , 2004 .

[96]  M. Chi,et al.  Effect of TiO2-SiO2 distribution on bimodal microstructure of TiO2-doped α-Al2O3 ceramics , 2005 .

[97]  K. Wolski,et al.  Intergranular penetration and embrittlement of solid nickel through bismuth vapour condensation at 700°C , 2001 .

[98]  R. M. Cannon,et al.  Solubility of Si3N4 in liquid SiO2 , 2004 .

[99]  R. French Origins and Applications of London Dispersion Forces and Hamaker Constants in Ceramics , 2004 .

[100]  W. Howells,et al.  The structure and dynamics of 2-dimensional fluids in swelling clays , 2006 .

[101]  B. Straumal,et al.  Grain boundary phase transitions and phase diagrams , 2001 .

[102]  R. Brydson,et al.  A comparison of the microstructure and mechanical properties of two liquid phase sintered aluminas containing different molar ratios of calcia–silica sintering additives , 2004 .

[103]  A. Roosen,et al.  Formation of intergranular amorphous films during the microstructural development of liquid phase sintered silicon carbide ceramics , 2004 .

[104]  M. Che,et al.  Characterization and Reactivity of Molecular Oxygen Species on Oxide Surfaces , 1983 .

[105]  D. Wolf High-temperature structure and properties of grain boundaries: long-range vs. short-range structural effects , 2001 .

[106]  Phase field model of premelting of grain boundaries , 2001, cond-mat/0111069.

[107]  R. M. Cannon,et al.  Grain boundary transitions in binary alloys. , 2006, Physical review letters.

[108]  Si-Young Choi,et al.  Kinetic formation and thickening of intergranular amorphous films at grain boundaries in barium titanate , 2004 .

[109]  Y. Chiang,et al.  Thermodynamic Stability of Intergranular Amorphous Films in Bismuth‐Doped Zinc Oxide , 2005 .

[110]  H. Kleebe,et al.  Grain-boundary wetting-dewetting in z = 1 SiAlON ceramic , 2004 .

[111]  Complex Nonlinear Deformation of Nanometer Intergranular Glassy Films in β−Si3N4 , 2005 .

[112]  S. Garofalini,et al.  Effect of interphase mixing on the structure of calcium silicate intergranular film/silicon nitride crystal interfaces , 2005 .

[113]  S. Phillpot,et al.  On the Thermodynamic Stability of Amorphous Intergranular Films in Covalent Materials , 1997 .

[114]  R. Lipowsky Critical Surface Phenomena at First-Order Bulk Transitions , 1982 .

[115]  Y. Chiang,et al.  Existence and stability of nanometer-thick disordered films on oxide surfaces , 2000 .

[116]  Yi-bing Cheng,et al.  Aluminum‐Containing Nilrogen Melilite Phases , 1994 .

[117]  R. M. Cannon,et al.  Grain boundary order-disorder transitions , 2006 .

[118]  M. Fisher,et al.  Multicriticality of Wetting, Prewetting, and Surface Transitions , 1982 .

[119]  E. Rabkin,et al.  Pressure influence on the grain boundary wetting phase transition in FeSi alloys , 1997 .

[120]  H. Kleebe,et al.  Effects of oxidation on intergranular phases in silicon nitride ceramics , 1993, Journal of Materials Science.

[121]  L. C. Jonghe,et al.  Grain boundary evolution in hot-pressed ABC-SIC , 2004 .

[122]  B. Predel,et al.  Premelting transition on 38°〈100〉 tilt grain boundaries in (Fe-10 at.% Si)-Zn alloys , 1992 .

[123]  J. Buban,et al.  Grain Boundary Strengthening in Alumina by Rare Earth Impurities , 2006, Science.

[124]  K. Knowles,et al.  Boron nitride–silicon carbide interphase boundaries in silicon nitride–silicon carbide particulate composites , 2002 .

[125]  W. Saam,et al.  New Phase-Transition Phenomena in Thin Argon Films , 1977 .

[126]  P. Cloetens,et al.  Direct evidence of nanometric invasionlike grain boundary penetration in the A(1)/Ga system. , 2005, Physical Review Letters.

[127]  Robert Sinclair,et al.  Solid-state amorphization at tetragonal-Ta/Cu interfaces , 1999 .

[128]  Lipowsky,et al.  Surface melting away from equilibrium. , 1991, Physical review. B, Condensed matter.

[129]  H. Gu Variation of Width and Composition of Grain‐Boundary Film in a High‐Purity Silicon Nitride with Minimal Silica , 2004 .

[130]  E. Tosatti,et al.  Melting and nonmelting of solid surfaces and nanosystems , 2005, cond-mat/0504680.

[131]  Y. Chiang,et al.  Characterization of Grain‐Boundary Segregation in MgO , 1981 .

[132]  B. Ocko,et al.  Surface Crystallization in a Liquid AuSi Alloy , 2006, Science.

[133]  H. Dosch,et al.  Interfacial melting of ice in contact with SiO(2). , 2004, Physical review letters.

[134]  D. Wolf,et al.  Self-diffusion in high-angle fcc metal grain boundaries by molecular dynamics simulation , 1999 .

[135]  R. M. Cannon,et al.  Full spectral calculation of non-retarded Hamaker constants for ceramic systems from interband transition strengths , 1995 .

[136]  Denier van der Gon AW,et al.  Crystal-face dependence of surface melting. , 1987, Physical review letters.

[137]  Taylor,et al.  Role of long-range interactions in the melting of a metallic surface. , 1989, Physical review. B, Condensed matter.

[138]  D. R. Cousens,et al.  Intergranular Films and Pore Surfaces in Synroc C: Structure, Composition, and Dissolution Characteristics , 1986 .

[139]  W. Kaplan,et al.  Amorphous Films at Metal/Ceramic Interfaces , 2003 .

[140]  Heon-Jin Choi,et al.  Refined Continuum Model on the Behavior of Intergranular Films in Silicon Nitride Ceramics , 2004 .

[141]  G. Thomas,et al.  Impurity Distribution in Polycrystalline Aluminum Nitride Ceramics , 1990 .

[142]  M. Rühle Structure and chemistry of interfaces , 1994 .

[143]  A. Misra,et al.  Ab initio modeling of clean and Y-doped grain boundaries in alumina and intergranular glassy films (IGF) in β-Si3N4 , 2006 .

[144]  D. Wilkinson,et al.  High‐Resolution Electron Microscopy Investigation of Viscous Flow Creep in a High‐Purity Silicon Nitride , 2004 .

[145]  H. Kleebe,et al.  Grain-Boundary Films in A Silicon Nitride Ceramic at High Temperatures , 1998 .

[146]  R. M. Cannon,et al.  Reactive spreading: adsorption, ridging and compound formation , 2000 .

[147]  M. Chi,et al.  Comparison of Segregation Behaviors for Special and General Boundaries in Polycrystalline Al2O3 with SiO2-TiO2 Impurities , 2004 .

[148]  S. Kanzaki,et al.  Dependency of Mechanical Property of Sintered Mullite on Chemical Composition , 1985 .

[149]  K. More,et al.  Role of Intergranular Films in Toughened Ceramics , 1999 .

[150]  M. Sanati,et al.  Vanadia Catalysts on Anatase, Rutile, and TiO2(B) for the Ammoxidation of Toluene: An ESR and High-Resolution Electron Microscopy Characterization , 1991 .

[151]  R. M. Cannon,et al.  Continuum modelling and representations of interfaces and their transitions in materials , 2006 .

[152]  H. Gleiter,et al.  Computer simulation of the structure and dynamical properties of grain boundaries in a nanocrystalline model material , 1995 .

[153]  R. M. Cannon,et al.  Calcia partition in phase-separated intergranular glass and interfaces in doped silicon nitride produced by hot isostatic pressing , 2006 .

[154]  M. Hoffmann,et al.  Measuring Electrostatic Potential Profiles across Amorphous Intergranular Films by Electron Diffraction , 2005, Microscopy and Microanalysis.

[155]  B. Smit,et al.  The Swelling of Clays: Molecular Simulations of the Hydration of Montmorillonite , 1996, Science.

[156]  S. Bhattacharyya,et al.  Projected potential profiles across intergranular glassy films , 2006 .

[157]  S. Phillpot,et al.  Thermodynamically stable amorphous intergranular films in nanocrystalline silicon , 1997 .

[158]  P D Haynes,et al.  Are the structures of twist grain boundaries in silicon ordered at 0 K? , 2006, Physical review letters.

[159]  P. Lejček,et al.  Thermodynamics and structural aspects of grain boundary segregation , 1995 .

[160]  I. Chen,et al.  Grain boundary mobility in Y2O3 : Defect mechanism and dopant effects , 1996 .

[161]  K. Watari,et al.  Grain boundary phase in AlN ceramics fired under reducing N2 atmosphere with carbon , 2003 .

[162]  R. M. Cannon,et al.  A diffuse interface model of interfaces: Grain boundaries in silicon nitride , 2005 .

[163]  R. Ritchie,et al.  Interface Structure and Atomic Bonding Characteristics in Silicon Nitride Ceramics , 2004, Science.

[164]  W. Kaplan,et al.  Intergranular films at metal-ceramic interfaces Part II - calculation of Hamaker coefficients , 2005 .

[165]  Breuer,et al.  Multicomponent order parameter for surface melting. , 1989, Physical review letters.

[166]  C. Herzig,et al.  Grain-boundary melting phase transition in the Cu-Bi system , 2005 .

[167]  Mittemeijer,et al.  Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries. , 1996, Physical review. B, Condensed matter.

[168]  J. Israelachvili Intermolecular and surface forces , 1985 .

[169]  R. Ritchie,et al.  Atomic Resolution Transmission Electron Microscopy of the Intergranular Structure of a Y2O3‐Containing Silicon Nitride Ceramic , 2003 .

[170]  Wai-Yim Ching,et al.  Molecular dynamics simulation of Y-doped Σ37 grain boundary in alumina , 2005 .

[171]  W. Pompe,et al.  A diffuse interface description of intergranular films in polycrystalline ceramics , 2004 .

[172]  N. Sirikulrat,et al.  Properties and intergranular phase analysis of a ZnO–CoO–Bi2O3 varistor , 2006 .

[173]  A. C. Levi On Surface Melting , 1991 .

[174]  S. Guo,et al.  Microstructural characterization and high-temperature strength of hot-pressed silicon nitride ceramics with Lu2O3 additives , 2003 .

[175]  J. R. Moon,et al.  The nickel activated sintering of Tungsten , 1971 .

[176]  L. Falk Imaging and microanalysis of liquid phase sintered silicon-based ceramic microstructures , 2004 .

[177]  H. Kleebe SiC and Si3N4 materials with improved fracture resistance , 1992 .

[178]  D. Clarke,et al.  Possible Electrical Double‐Layer Contribution to the Equilibrium Thickness of Intergranular Glass Films in Polycrystalline Ceramics , 1993 .

[179]  H. Kleebe,et al.  Amorphous Intergranular Films in Silicon Nitride Ceramics Quenched from High Temperatures , 1993 .

[180]  R. M. Cannon,et al.  High‐Temperature Fracture Mechanism of Low‐Ca‐Doped Silicon Nitride , 1995 .

[181]  K. Wolski,et al.  About the Importance of Nanometer-Thick Intergranular Penetration in the Analysis of Liquid Metal Embrittlement , 2001 .

[182]  U. Czubayko,et al.  Acceleration of grain boundary motion in Al by small additions of Ga , 1995 .

[183]  Lipowsky Melting at grain boundaries and surfaces. , 1986, Physical Review Letters.

[184]  L. Gauckler,et al.  Sintering Analysis of Undoped and Cobalt Oxide Doped Ceria Solid Solutions , 2005 .

[185]  H. Kleebe Structure and Chemistry of Interfaces in Si3N4 Ceramics Studied by Transmission Electron Microscopy , 1997 .

[186]  E. Rabkin,et al.  Thermodynamic aspects of the grain boundary segregation in Cu(Bi) alloys , 1999 .

[187]  Wolf,et al.  Thermodynamic Criterion for the Stability of Amorphous Intergranular Films in Covalent Materials. , 1996, Physical review letters.

[188]  E. .. Mittemeijer,et al.  Grain Boundary Grooving as an Indicator of Grain Boundary Phase Transformations , 2001 .

[189]  W. Ching,et al.  Electronic structure and bonding of intergranular glassy films in polycrystalline Si 3 N 4 : Ab initio studies and classical molecular dynamics simulations , 2005 .

[190]  I. Tanaka,et al.  XANES and ELNES in Ceramic Science , 2005 .

[191]  Yiying Wu,et al.  Single-crystalline nanowires of Ag(2)Se can be synthesized by templating against nanowires of trigonal Se. , 2001, Journal of the American Chemical Society.

[192]  O. Kienzle,et al.  Grain boundaries in strontium titanate , 2000 .

[193]  R. M. Cannon,et al.  Dispersion forces and Hamaker constants for intergranular films in silicon nitride from spatially resolved-valence electron energy loss spectrum imaging , 1998 .

[194]  C. Herzig,et al.  Grain boundary diffusion and segregation of Bi in Cu: radiotracer measurements in B and C diffusion regimes , 2004 .

[195]  R. M. Cannon,et al.  Composition and chemical width of ultrathin amorphous films at grain boundaries in silicon nitride , 1998 .

[196]  Priya Vashishta,et al.  A Crossover in the Mechanical Response of Nanocrystalline Ceramics , 2005, Science.

[197]  T. Langdon,et al.  Microstructural examination of a superplastic yttria-stabilized zirconia: Implications for the superplasticity mechanism , 1995 .

[198]  R. M. Cannon,et al.  Grain‐Boundary Microstructure and Chemistry of a Hot Isostatically Pressed High‐Purity Silicon Nitride , 1996 .

[199]  R. M. Cannon,et al.  High temperature colloidal behavior : Particles in liquid silicates , 1999 .

[200]  P. Wynblatt,et al.  Experimental evidence for a wetting transition in liquid GaPb alloys , 1996 .

[201]  A G Yodh,et al.  Premelting at Defects Within Bulk Colloidal Crystals , 2005, Science.

[202]  G. Centi Nature of active layer in vanadium oxide supported on titanium oxide and control of its reactivity in the selective oxidation and ammoxidation of alkylaromatics , 1996 .

[203]  Sung-Yoon Chung,et al.  Intergranular amorphous films and dislocations-promoted grain growth in SrTiO3 , 2003 .

[204]  Jiangyong Wang,et al.  Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon , 2006 .

[205]  C. Koch Examination of structural properties of interfaces by electron diffraction , 2006 .

[206]  H. Kleebe,et al.  Interface structure of a chlorine-doped Si3N4 studied by high-resolution transmission electron microscopy , 1997 .

[207]  Doh-Yeon Kim,et al.  Activated sintering of nickel-doped tungsten: Approach by grain boundary structural transition , 2000 .

[208]  T. Hsieh,et al.  Experimental study of grain boundary melting in aluminum , 1989 .

[209]  R. Ritchie,et al.  Interfacial structure in silicon nitride sintered with lanthanide oxide , 2006 .

[210]  Zhu,et al.  Surface melting of neon and argon films: Profile of the crystal-melt interface. , 1988, Physical review letters.

[211]  H. Kleebe,et al.  Quantitative Comparison of TEM Techniques for Determining Amorphous Intergranular Film Thickness , 1993 .

[212]  Saam,et al.  New reentrant wetting phenomena and critical behavior near bulk critical points. , 1987, Physical Review Letters.

[213]  L. C. Jonghe,et al.  Abrasive wear behavior of heat-treated ABC-silicon carbide , 2003 .

[214]  J. Gambino,et al.  Effect of Heat Treatments on the Wetting Behavior of Bismuth‐Rich Intergranular Phases in ZnO:Bi:Co Varistors , 1989 .

[215]  C. Dwyer,et al.  Arrangement of rare-earth elements at prismatic grain boundaries in silicon nitride , 2004 .

[216]  Y. Chiang,et al.  Equilibrium-thickness Amorphous Films on {} surfaces of Bi2O3-doped ZnO , 1999 .

[217]  J. V. D. Veen,et al.  Surface-induced melting and freezing I. Medium-energy ion scattering investigation of the melting of Pb{hkl} crystal faces , 1990 .

[218]  D. Laird Influence of layer charge on swelling of smectites , 2006 .

[219]  R. Schlögl,et al.  Structural study of titanium doped vanadia and vanadium doped titania catalysts , 2003 .

[220]  R. M. Cannon,et al.  Intergranular glassy films: An overview , 2006 .

[221]  M. Moldover,et al.  A search for the prewetting line , 1986 .

[222]  John W. Cahn,et al.  Critical point wetting , 1977 .

[223]  R. French,et al.  Graded interface models for more accurate determination of van der Waals-London dispersion interactions across grain boundaries , 2006 .

[224]  A. Kirkland,et al.  Structural and compositional comparison of Si3N4 ceramics with different fracture modes , 2006 .

[225]  Y. Ikuhara,et al.  Solute segregation at grain boundaries in superplastic SiO2-doped TZP , 1997 .

[226]  Robert O. Ritchie,et al.  Effects of Grain‐Boundary Structure on the Strength, Toughness, and Cyclic‐Fatigue Properties of a Monolithic Silicon Carbide , 2004 .

[227]  Moon In-Hyung,et al.  The effect of the doping method on the sinterability of nickel-doped tungsten compacts , 1984 .

[228]  M. Lance,et al.  Direct Observations of Debonding of Reinforcing Grains in Silicon Nitride Ceramics Sintered with Yttria Plus Alumina Additives , 2005 .

[229]  Michael J. Hoffmann,et al.  Yb2O3-fluxed sintered silicon nitride , 1993 .

[230]  I. Tanaka,et al.  Calcium Concentration Dependence of the Intergranular Film Thickness in Silicon Nitride , 1994 .

[231]  L. C. Jonghe,et al.  Role of the grain-boundary phase on the elevated-temperature strength, toughness, fatigue and creep resistance of silicon carbide sintered with Al, B and C , 2000 .

[232]  Rodney S. Ruoff,et al.  Single-Crystal Calcium Hexaboride Nanowires: Synthesis and Characterization , 2004 .

[233]  H. Kleebe,et al.  Interface characteristics affecting electrical properties of Y-doped SiC , 2003 .

[234]  R. Brydson,et al.  Microstructure–stress relationships in liquid-phase sintered alumina modified by the addition of 5 wt.% of calcia–silica additives , 2006 .

[235]  S. Garofalini,et al.  Molecular dynamics computer simulations of the interface structure of calcium-alumino-silicate intergranular films between combined basal and prism planes of α-Al 2O 3 , 2004 .

[236]  R. Lipowsky,et al.  Semi-infinite systems with first-order bulk transitions , 1983 .

[237]  B. Straumal,et al.  Grain Boundary Phase Transitions in the Cu-Bi System , 2001 .

[238]  J. Bruley,et al.  HREM and AEM studies of Yb2O3-fluxed silicon nitride ceramics with and without CaO addition , 1994 .

[239]  H. Kleebe,et al.  Grain‐Boundary Viscosity of Polycrystalline Silicon Carbides , 1998 .

[240]  W. Craig Carter,et al.  Diffuse interface model for structural transitions of grain boundaries , 2006 .

[241]  Y. Chiang,et al.  Space Charge Segregation at Grain Boundaries in Titanium Dioxide: II, Model Experiments , 1993 .

[242]  R. M. Cannon,et al.  Dopant Distribution in Grain-Boundary Films in Calcia-Doped Silicon Nitride Ceramics , 1998 .

[243]  B. Liu,et al.  Solid-state crystal-to-amorphous transition in metal‐metal multilayers and its thermodynamic and atomistic modelling , 2001 .

[244]  M. Mabuchi,et al.  Interface structure of Si3N4-whisker-reinforced Al-Mg-Si alloy (Al alloy 6061) composites studied by high-resolution electron microscopy , 1996 .

[245]  D. Molodov,et al.  Grain Boundary Migration in Metals: Recent Developments , 1998 .

[246]  S. J. Milne,et al.  Microstructure and Chemistry of Intergranular Glassy Films in Liquid‐Phase‐Sintered Alumina , 2005 .

[247]  R. Rosenberg,et al.  Why is ice slippery , 2005 .

[248]  D. ben-Avraham Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2006 .

[249]  Zhong Lin Wang,et al.  Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres , 2006, Science.

[250]  Y. Ikuhara,et al.  Microstructural Characterization of Superplastic SiO2‐doped TZP with a Small Amount of Oxide Addition , 2005 .

[251]  H. Meyer,et al.  Thin intergranular films and solid-state activated sintering in nickel-doped tungsten , 2007 .

[252]  M. Finnis,et al.  Electrostatic and entropic interactions between parallel interfaces separated by a glassy film , 2002 .

[253]  Weiwei Luo,et al.  Molecular Dynamics Simulations of Calcium Silicate Intergranular Films between Silicon Nitride Crystals , 2003 .

[254]  L. Chang,et al.  Temperature dependence of the grain boundary segregation of Bi in Cu polycrystals , 1997 .