Quantum computer-aided design of quantum optics hardware

The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design.

[1]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[2]  Jian-Wei Pan,et al.  12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion. , 2018, Physical review letters.

[3]  Teresa Tamayo-Mendoza,et al.  TEQUILA: a platform for rapid development of quantum algorithms , 2020, Quantum Science and Technology.

[4]  Ivano Tavernelli,et al.  Nonunitary Operations for Ground-State Calculations in Near-Term Quantum Computers. , 2019, Physical review letters.

[5]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[6]  Jian-Wei Pan,et al.  Quantum Teleportation in High Dimensions. , 2019, Physical review letters.

[7]  Jing Liu,et al.  A search algorithm for quantum state engineering and metrology , 2015, 1511.05327.

[8]  Alán Aspuru-Guzik,et al.  Conceptual Understanding through Efficient Automated Design of Quantum Optical Experiments , 2020, Physical Review X.

[9]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[10]  Carlos Sab'in Digital Quantum Simulation of Linear and Nonlinear Optical Elements , 2019 .

[11]  Scott Aaronson,et al.  Bosonsampling is far from uniform , 2013, Quantum Inf. Comput..

[12]  Alejandro Perdomo-Ortiz,et al.  Quantum-assisted Helmholtz machines: A quantum–classical deep learning framework for industrial datasets in near-term devices , 2017, ArXiv.

[13]  Lucas Lamata Quantum machine learning and quantum biomimetics: A perspective , 2020, ArXiv.

[14]  Geoff J Pryde,et al.  Experimental Realization of a Quantum Autoencoder: The Compression of Qutrits via Machine Learning. , 2018, Physical review letters.

[15]  Raphaël Clifford,et al.  The Classical Complexity of Boson Sampling , 2017, SODA.

[16]  Yuan Su,et al.  Faster quantum simulation by randomization , 2018, Quantum.

[17]  Simone Severini,et al.  Experimental learning of quantum states , 2017, Science Advances.

[18]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[19]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[20]  Alán Aspuru-Guzik,et al.  Quantum Neuron: an elementary building block for machine learning on quantum computers , 2017, ArXiv.

[21]  Andrew Forbes,et al.  Simultaneous entanglement swapping of multiple orbital angular momentum states of light , 2016, Nature Communications.

[22]  Electromagnetic Force and Momentum , 2016, 1612.06478.

[23]  Hans-J. Briegel,et al.  Machine learning for long-distance quantum communication , 2019, PRX Quantum.

[24]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[25]  Jonathan C. F. Matthews,et al.  Designing quantum experiments with a genetic algorithm , 2018, ArXiv.

[26]  Alejandro Perdomo-Ortiz,et al.  Classical versus Quantum Models in Machine Learning: Insights from a Finance Application , 2019 .

[27]  Travis S. Humble,et al.  Quantum chemistry as a benchmark for near-term quantum computers , 2019, npj Quantum Information.

[28]  Raphaël Clifford,et al.  Classical boson sampling algorithms with superior performance to near-term experiments , 2017, Nature Physics.

[29]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[30]  Johnnie Gray,et al.  quimb: A python package for quantum information and many-body calculations , 2018, J. Open Source Softw..

[31]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[32]  Jian-Wei Pan,et al.  18-Qubit Entanglement with Six Photons' Three Degrees of Freedom. , 2018, Physical review letters.

[33]  Philip Walther,et al.  Experimental verification of an indefinite causal order , 2016, Science Advances.

[34]  Ming-Cheng Chen,et al.  Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 10^{14}-Dimensional Hilbert Space. , 2019, Physical review letters.

[35]  Halina Rubinsztein-Dunlop,et al.  Roadmap on structured light , 2016 .

[36]  Juan Miguel Arrazola,et al.  Machine learning method for state preparation and gate synthesis on photonic quantum computers , 2018, Quantum Science and Technology.

[37]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[38]  Vladyslav Verteletskyi,et al.  Measurement optimization in the variational quantum eigensolver using a minimum clique cover. , 2019, The Journal of chemical physics.

[39]  Mario Krenn,et al.  Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits , 2018, Nature Photonics.

[40]  John G. Rarity,et al.  Chip-to-chip quantum teleportation and multi-photon entanglement in silicon , 2019 .

[41]  Nathan Wiebe,et al.  Pattern recognition techniques for Boson Sampling validation , 2017, Physical Review X.

[42]  Cyril Branciard,et al.  Experimental test of local observer independence , 2019, Science Advances.

[43]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[44]  Yudong Cao,et al.  Realizing Quantum Boltzmann Machines Through Eigenstate Thermalization , 2019, 1903.01359.

[45]  Marcus Huber,et al.  Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems , 2013, 1307.3541.

[46]  Tzu-Ching Yen,et al.  Measuring all compatible operators in one series of single-qubit measurements using unitary transformations. , 2019, Journal of chemical theory and computation.

[47]  Mario Krenn,et al.  Computer-inspired quantum experiments , 2020, Nature Reviews Physics.

[48]  Emanuel Knill,et al.  Quantum simulations of physics problems , 2003, SPIE Defense + Commercial Sensing.

[49]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[50]  R. Feynman Simulating physics with computers , 1999 .

[51]  Tao Tao,et al.  Three-dimensional entanglement on a silicon chip , 2019, 1911.08807.

[52]  Barry C. Sanders,et al.  Experimental quantum cloning in a pseudo-unitary system , 2020 .

[53]  Miles J Padgett,et al.  Orbital angular momentum 25 years on [Invited]. , 2017, Optics express.

[54]  Alán Aspuru-Guzik,et al.  An artificial spiking quantum neuron , 2019, npj Quantum Information.

[55]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[56]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[57]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[58]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[59]  R. Boyd,et al.  High-dimensional intracity quantum cryptography with structured photons , 2016, 1612.05195.

[60]  Eric G. Cavalcanti,et al.  Testing the reality of Wigner's friend's experience , 2019, Micro + Nano Materials, Devices, and Applications.

[61]  Robert A. Lang,et al.  On the order problem in construction of unitary operators for the variational quantum eigensolver. , 2020, Physical chemistry chemical physics : PCCP.

[62]  Harper R. Grimsley,et al.  Is the Trotterized UCCSD Ansatz Chemically Well-Defined? , 2019, Journal of chemical theory and computation.

[63]  Gian Giacomo Guerreschi,et al.  Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians , 2019, npj Quantum Information.

[64]  Tzu-Ching Yen,et al.  Unitary partitioning approach to the measurement problem in the Variational Quantum Eigensolver method. , 2019, Journal of chemical theory and computation.

[65]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[66]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[67]  Robert Fickler,et al.  Twisted photons: new quantum perspectives in high dimensions , 2017, Light: Science & Applications.